化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3202-3214.DOI: 10.11949/0438-1157.20201458
收稿日期:
2020-10-20
修回日期:
2020-11-28
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
费强
作者简介:
高子熹(1996—),男,博士研究生,基金资助:
GAO Zixi1(),GUO Shuqi1,FEI Qiang1,2()
Received:
2020-10-20
Revised:
2020-11-28
Online:
2021-06-05
Published:
2021-06-05
Contact:
FEI Qiang
摘要:
全球人口持续增长使得肉、蛋和乳制品等生活品的需求大幅增加,同时也对传统动物饲料的供应带来了空前的挑战。微生物能够利用二氧化碳(CO2)、甲烷(CH4)等多种原料合成高蛋白含量的单细胞蛋白(single cell protein,SCP)以用于饲料或食品加工。生物转化CO2和CH4制备SCP不但可以扩展蛋白生产渠道和缓解各方面对蛋白的需求,而且也有望降低其生产成本,实现节能减排。从SCP合成及生产现状出发,探讨了好氧性甲烷菌和微藻利用温室气体的代谢路径、生物转化工艺、生物反应器设计的研究进展和未来应用前景,同时结合研究数据对生物转化温室气体制备SCP的经济可行性进行了初步评价和比较。
中图分类号:
高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214.
GAO Zixi, GUO Shuqi, FEI Qiang. Recent progress in microbial bioconversion of greenhouse gases into single cell protein[J]. CIESC Journal, 2021, 72(6): 3202-3214.
1 | Teixeira L V, Moutinho L F, Romão-Dumaresq A S. Gas fermentation of C1 feedstocks: commercialization status and future prospects[J]. Biofuels, Bioproducts and Biorefining, 2018, 12(6): 1103-1117. |
2 | Kocs E A. The global carbon nation: status of CO2 capture, storage and utilization[C]// 5th Course of the MRS-EMRS “Materials for Energy and Sustainability” and 3rd Course of the “EPS-SIF International School on Energy”. Erice, Italy, 2017: 00002. |
3 | Chai X L, Tonjes D J, Mahajan D. Methane emissions as energy reservoir: context, scope, causes and mitigation strategies[J]. Progress in Energy and Combustion Science, 2016, 56(5): 33-70. |
4 | Halmemies-Beauchet-filleau A, Rinne M, Lamminen M, et al. Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects[J]. Animal, 2018, 12: s295-s309. |
5 | Macdiarmid J I, Whybrow S. Nutrition from a climate change perspective[J]. The Proceedings of the Nutrition Society, 2019, 78(3): 380-387. |
6 | Puyol D, Batstone D J, Hülsen T, et al. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects[J]. Frontiers in Microbiology, 2017, 7: 2106. |
7 | Garg S, Wu H, Clomburg J M, et al. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C[J]. Metabolic Engineering, 2018, 48(4): 175-183. |
8 | 央广网. 巴黎气候大会: 中国为实现低碳承诺做了这些事[EB/OL]. [2020-10-08]. . |
CNR. Climate conference in Paris: things that China has done to fulfill the low-carbon emissions promise[EB/OL]. [2020-10-08]. . | |
9 | Li Q, Chen Z A, Zhang J T, et al. Positioning and revision of CCUS technology development in China[J]. International Journal of Greenhouse Gas Control, 2016, 46(3): 282-293. |
10 | Dineshbabu G, Goswami G, Kumar R, et al. Microalgae-nutritious, sustainable aqua- and animal feed source[J]. Journal of Functional Foods, 2019, 62(11): 103545. |
11 | Maurya R, Paliwal C, Ghosh T, et al. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery[J]. Bioresource Technology, 2016, 214(8): 787-796. |
12 | Chew K W, Yap J Y, Show P L, et al. Microalgae biorefinery: high value products perspectives[J]. Bioresource Technology, 2017, 229(4): 53-62. |
13 | Cesário M T, da Fonseca M M R, Marques M M, et al. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials[J]. Biotechnology Advances, 2018, 36(3): 798-817. |
14 | Li Y B, Li Y, Wang B Q, et al. The status quo review and suggested policies for shale gas development in China[J]. Renewable and Sustainable Energy Reviews, 2016, 59(6): 420-428. |
15 | Kougias P G, Angelidaki I. Biogas and its opportunities—a review[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 14. |
16 | Johnravindar D, Liang B B, Fu R Z, et al. Supplementing granular activated carbon for enhanced methane production in anaerobic co-digestion of post-consumer substrates[J]. Biomass and Bioenergy, 2020, 136(5): 105543. |
17 | Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: a review[J]. Applied Energy, 2016, 172(12): 286-322. |
18 | Kim H J, Huh J, Kwon Y W, et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains[J]. Nature Catalysis, 2019, 2(4): 342-353. |
19 | Garg S, Clomburg J M, Gonzalez R. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6): 379-391. |
20 | Cantera S, Lebrero R, Rodríguez S, et al. Ectoine bio-milking in methanotrophs: a step further towards methane-based bio-refineries into high added-value products[J]. Chemical Engineering Journal, 2017, 328(22): 44-48. |
21 | Fei Q, Puri A W, Smith H, et al. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense[J]. Biotechnology for Biofuels, 2018, 11(5):129. |
22 | García-Pérez T, López J C, Passos F, et al. Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor[J]. Chemical Engineering Journal, 2018, 334: 691-697. |
23 | Dürre P, Eikmanns B J. C1-carbon sources for chemical and fuel production by microbial gas fermentation[J]. Current Opinion in Biotechnology, 2015, 35(6): 63-72. |
24 | 胡礼珍, 王佳, 袁波, 等. 碳一气体生物利用进展[J]. 生物加工过程, 2017, 15(6): 17-25. |
Hu L Z, Wang J, Yuan B, et al. Production of biofuels and chemicals from C1 gases by microorganisms: status and prospects[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(6): 17-25. | |
25 | Khoshnevisan B, Tsapekos P, Zhang Y F, et al. Urban biowaste valorization by coupling anaerobic digestion and single cell protein production[J]. Bioresource Technology, 2019, 290(10): 121743. |
26 | Ranganathan P, Savithri S. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing[J]. Bioresource Technology, 2019, 284(6): 256-265. |
27 | Ritala A, Häkkinen S T, Toivari M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001—2016[J]. Frontiers in Microbiology, 2017, 8: 2009. |
28 | Kim S W, Less J F, Wang L, et al. Meeting global feed protein demand: challenge, opportunity, and strategy[J]. Annual Review of Animal Biosciences, 2019, 7: 221-243. |
29 | Linder T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system[J]. Food Security, 2019, 11(2): 265-278. |
30 | Matos  P. The impact of microalgae in food science and technology[J]. Journal of the American Oil Chemists' Society, 2017, 94(11): 1333-1350. |
31 | Becker E W. Micro-algae as a source of protein[J]. Biotechnology Advances, 2007, 25(2): 207-210. |
32 | Øverland M, Tauson A H, Shearer K, et al. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals[J]. Archives of Animal Nutrition, 2010, 64(3): 171-189. |
33 | Jones S W, Karpol A, Friedman S, et al. Recent advances in single cell protein use as a feed ingredient in aquaculture[J]. Current Opinion in Biotechnology, 2020, 61(1): 189-197. |
34 | Matassa S, Boon N, Pikaar I, et al. Microbial protein: future sustainable food supply route with low environmental footprint[J]. Microbial Biotechnology, 2016, 9(5): 568-575. |
35 | Fei Q, Liang B B, Tao L, et al. Biological valorization of natural gas for the production of lactic acid: techno-economic analysis and life cycle assessment[J]. Biochemical Engineering Journal, 2020, 158(6): 107500. |
36 | Service R F. Cost of carbon capture drops, but does anyone want it?[J]. Science, 2016, 354(6318): 1362-1363. |
37 | Mesters C. A selection of recent advances in C1 chemistry[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7: 223-238. |
38 | Fei Q, Guarnieri M T, Tao L, et al. Bioconversion of natural gas to liquid fuel: opportunities and challenges[J]. Biotechnology Advances, 2014, 32(3): 596-614. |
39 | Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162(2): 1633-1652. |
40 |
Verbeeck K, de Vrieze J, Pikaar I, et al. Assessing the potential for up-cycling recovered resources from anaerobic digestion through microbial protein production[J]. Microbial Biotechnology, 2020, doi:10.1111/1751-7915.13600.
DOI URL |
41 | Sui Y X, Jiang Y, Moretti M, et al. Harvesting time and biomass composition affect the economics of microalgae production[J]. Journal of Cleaner Production, 2020, 259(17): 120782. |
42 | Chen Y, Sun L P, Liu Z H, et al. Integration of waste valorization for sustainable production of chemicals and materials via algal cultivation[J]. Topics in Current Chemistry, 2017, 375(6): 89. |
43 | 崔堂武, 袁波, 凌晨, 等. 木质素降解酶的酶活测试方法的评价与分析[J]. 化工进展, 2020, 39(12): 5189-5202. |
Cui T W, Yuan B, Ling C, et al. Evaluation and analysis of activity assays of ligninolytic enzymes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5189-5202. | |
44 | Bomgardner M. Calysta raises money for fish food[J]. Chemical & Engineering News, 2017, 95(19): 10. |
45 | Bothe H, Møller Jensen K, Mergel A, et al. Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process[J]. Applied Microbiology and Biotechnology, 2002, 59(1): 33-39. |
46 | Cyanotech. Nutrex Hawaii[EB/OL]. [2020-11-20]. . |
47 | Earthrise. Shop Californian Spirulina[EB/OL]. [2020-11-20]. . |
48 | 康普螺旋藻有限公司. 饲料级螺旋藻粉[EB/OL]. [2020-11-20]. . |
Comp Spirulina Co., Ltd. Feed-grade Spirulina powder[EB/OL]. [2020-11-20]. . | |
49 | 新大泽. 螺旋藻粉[EB/OL]. [2020-11-20]. . |
Dnarmsa King. Spirulina powder[EB/OL]. [2020-11-20]. . | |
50 | ENERGYbits. ENERGYbits® Spirulina[EB/OL]. [2020-11-20]. . |
51 | FEBICO. Biophyto® Premium Chlorella Powder[EB/OL]. [2020-11-20]. . |
52 | Klötze Roquette. Chlorella[EB/OL]. [2020-11-20]. . |
53 | 康普螺旋藻有限公司. 小球藻粉[EB/OL]. [2020-11-20]. . |
Comp Spirulina Co., Ltd. Chlorella powder[EB/OL]. [2020-11-20]. . | |
54 | Euglena Co., Ltd. Green Powder[EB/OL]. [2020-11-20]. . |
55 | Algae Has. Checkout Pot of Green[EB/OL]. [2020-11-20]. . |
56 | 新浪财经. 中国透云举行动土奠基仪式 打造全球首座莱茵衣藻工厂[EB/OL]. [2020-11-20]. . |
Sina Finance. Breaking ground ceremony was held in Touyun, China, where the first plant processing Chlamydomonas reinhardtii would be build[EB/OL]. [2020-11-20]. . | |
57 | Drejer A, Ritschel T, Jørgensen S B, et al. Economic optimizing control for single-cell protein production in a U-loop reactor[C]// Proceedings of the 27th European Symposium on Computer Aided Process Engineering. Barcelona, Spain, 2017: 1759-1764. |
58 | Unibio. Introduction[EB/OL]. [2020-10-08]. . |
59 | Dong T, Fei Q, Genelot M, et al. A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense[J]. Energy Conversion and Management, 2017, 140(10): 62-70. |
60 | Forján E, Navarro F, Cuaresma M, et al. Microalgae: fast-growth sustainable green factories[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(16): 1705-1755. |
61 | Chen J, Wang Y, Benemann J R, et al. Microalgal industry in China: challenges and prospects[J]. Journal of Applied Phycology, 2016, 28(2): 715-725. |
62 | Gamboa-Delgado J, Márquez-Reyes J M. Potential of microbial-derived nutrients for aquaculture development[J]. Reviews in Aquaculture, 2018, 10(1): 224-246. |
63 | 麦克尔 L.舒勒, 费克莱特·卡基. 生物过程工程: 基本概念[M]. 陈涛, 赵学明, 等, 译. 2版. 北京: 化学工业出版社, 2008: 170. |
Shuler M L, Kargi F. Bioprocess Engineering: Basic Concepts[M]. Chen T, Zhao X M, et al., trans. 2nd ed. Beijing: Chemical Industry Press, 2008: 170. | |
64 | Strong P J, Xie S, Clarke W P. Methane as a resource: can the methanotrophs add value?[J]. Environmental Science & Technology, 2015, 49(7): 4001-4018. |
65 | Nunes J J, Aufderheide B, Ramjattan D M, et al. Enhanced production of single cell protein from M. capsulatus (Bath) growing in mixed culture[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 6(3): 894-899. |
66 | Tsapekos P, Khoshnevisan B, Zhu X Y, et al. Methane oxidising bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste[J]. Journal of Environmental Management, 2019, 251(23): 109590. |
67 | Kalyuzhnaya M G, Eckert C A, Trinh C T. Methane biocatalysis: selecting the right microbe [M]//Biotechnology for Biofuel Production and Optimization. Amsterdam: Elsevier, 2016: 353-383. |
68 |
Kabimoldayev I, Nguyen A D, Yang L, et al. Basics of genome-scale metabolic modeling and applications on C1-utilization[J]. FEMS Microbiology Letters, 2018, 365(20), doi: 10.1093/femsle/fny241.
DOI URL |
69 | Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29(3): 142-152. |
70 | Pieja A J, Morse M C, Cal A J. Methane to bioproducts: the future of the bioeconomy?[J]. Current Opinion in Chemical Biology, 2017, 41(6): 123-131. |
71 | Clomburg J M, Crumbley A M, Gonzalez R. Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320) : aag0804. |
72 | Kyoto Encyclopedia of Genes and Genomes. KEGG pathway maps[DB/OL]. [2020-10-08]. . |
73 | Sun H, Zhao W Y, Mao X M, et al. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion[J]. Biotechnology for Biofuels, 2018, 11(8):227. |
74 | Baroukh C, Muñoz-Tamayo R, Steyer J P, et al. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production[J]. Metabolic Engineering, 2015, 30(4): 49-60. |
75 | Tibocha-Bonilla J D, Zuñiga C, Godoy-Silva R D, et al. Advances in metabolic modeling of oleaginous microalgae[J]. Biotechnology for Biofuels, 2018, 11(9): 241. |
76 | Lupatini A L, Colla L M, Canan C, et al. Potential application of microalga Spirulina platensis as a protein source[J]. Journal of the Science of Food and Agriculture, 2017, 97(3): 724-732. |
77 | Benemann J. Microalgae for biofuels and animal feeds[J]. Energies, 2013, 6(11): 5869-5886. |
78 | Davis R, Markham J, Kinchin C, et al. Process design and economics for the production of algal biomass[R]. USA: NREL, 2016. |
79 | Fei Q, Pienkos P T. Bioconversion of methane for value-added products[M]//Sani R K, Rathinam N K. Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Cham, Germany: Springer, 2018: 145-162. |
80 | 宋安东, 张炎达, 杨大娇, 等. 合成气厌氧发酵生物反应器的研究进展[J]. 生物加工过程, 2014, 12(6): 96-102. |
Song A D, Zhang Y D, Yang D J, et al. Research progress in bioreactors for anaerobic fermentation of syngas[J]. Chinese Journal of Bioprocess Engineering, 2014, 12(6): 96-102. | |
81 | Vu M T T, Jepsen P M, Jørgensen N O G, et al. Testing the yield of a pilot-scale bubble column photobioreactor for cultivation of the microalga Rhodomonas salina as feed for intensive calanoid copepod cultures[J]. Aquaculture Research, 2019, 50(1): 63-71. |
82 | Litchfield J H. Comparative technical and economic aspects of single-cell protein processes[J]. Advances in Applied Microbiology, 1977, 22: 267-305. |
83 | Mahapatra D M, Chanakya H N, Ramachandra T V. Algae derived single-cell proteins: economic cost analysis and future prospects[M]// Dhillon G S. Protein Byproducts: Transformation from Environmental Burden into Value-Added Products. UK: Academic Press Ltd.-Elsevier Science Ltd., 2016: 275-301. |
84 | Unibio. The protein[EB/OL]. [2020-10-08]. . |
85 | Hu L Z, Yang Y F, Yan X, et al. Molecular mechanism associated with the impact of methane/oxygen gas supply ratios on cell growth of Methylomicrobium buryatense 5GB1 through RNA-seq[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 263. |
86 | Chae S R, Hwang E J, Shin H S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J]. Bioresource Technology, 2006, 97(2): 322-329. |
87 | Asimakopoulos K, Gavala H N, Skiadas I V. Reactor systems for syngas fermentation processes: a review[J]. Chemical Engineering Journal, 2018, 348(18): 732-744. |
88 | Stone K A, Hilliard M V, He Q P, et al. A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion[J]. Biochemical Engineering Journal, 2017, 128(12): 83-92. |
89 | Kadic E, Heindel T J. An Introduction to Bioreactor Hydrodynamics and Gas-liquid Mass Transfer[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2014: 69. |
90 | Humbird D, Fei Q. Scale-up considerations for biofuels[M]// Eckert C A, Trinh C T. Biotechnology for Biofuel Production and Optimization. Amsterdam: Elsevier, 2016: 513-537. |
91 | Hensirisak P, Parasukulsatid P, Agblevor F A, et al. Scale-up of microbubble dispersion generator for aerobic fermentation[J]. Applied Biochemistry and Biotechnology, 2002, 101(3): 211-227. |
92 | Westbrook A W, Ren X, Moo-Young M, et al. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis[J]. Biotechnology and Bioengineering, 2018, 115(5): 1239-1252. |
93 | Han B, Su T, Wu H, et al. Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b[J]. Applied Microbiology and Biotechnology, 2009, 83(4): 669-677. |
94 | Qi H S, Zhao S M, Fu H, et al. Enhancement of ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by combining resin HP20 addition and metabolic profiling analysis[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(9): 1365-1374. |
95 | Quijano G, Rocha-Ríos J, Hernández M, et al. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 1085-1089. |
96 | Humbird D, Davis R, McMillan J D. Aeration costs in stirred-tank and bubble column bioreactors[J]. Biochemical Engineering Journal, 2017, 127(11): 161-166. |
97 | Al Taweel A M, Shah Q, Aufderheide B. Effect of mixing on microorganism growth in loop bioreactors[J]. International Journal of Chemical Engineering, 2012, 2012(15): 1-12. |
98 | Unibio. The U-loop fermentor[EB/OL]. [2020-10-08]. . |
99 | 朱佛代, 杨福胜, 张锋, 等. 甲烷生物转化膜反应器的CFD模拟[J]. 高校化学工程学报, 2019, 33(3): 603-610. |
Zhu F D, Yang F S, Zhang F, et al. CFD simulation of a membrane bioreactor for methane bioconversion[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3): 603-610. | |
100 | Valverde-Pérez B, Xing W, Zachariae A A, et al. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production[J]. Bioresource Technology, 2020, 310: 123388. |
101 | Rizwan M, Mujtaba G, Memon S A, et al. Exploring the potential of microalgae for new biotechnology applications and beyond: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 394-404. |
102 | Meng C, Huang J K, Ye C Y, et al. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments[J]. Bioprocess and Biosystems Engineering, 2015, 38(7): 1347-1363. |
103 | Acién Fernández F G, Fernández Sevilla J M, Molina Grima E. Photobioreactors for the production of microalgae[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(2): 131-151. |
104 | Jagadevan S, Banerjee A, Banerjee C, et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production[J]. Biotechnology for Biofuels, 2018, 11(6):185. |
105 | Jeon S, Lim J M, Lee H G, et al. Current status and perspectives of genome editing technology for microalgae[J]. Biotechnology for Biofuels, 2017, 10(11):267. |
106 | Mayers J J, Vaiciulyte S, Malmhäll-Bah E, et al. Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation[J]. Algal Research, 2018, 31(4): 430-442. |
107 | Zhu C B, Han D S, Li Y H, et al. Cultivation of aquaculture feed Isochrysis zhangjiangensis in low-cost wave driven floating photobioreactor without aeration device[J]. Bioresource Technology, 2019, 293(12): 122018. |
108 | Chen C Y, Chang Y H, Chang H Y. Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production[J]. Algal Research, 2016, 13(1): 264-270. |
109 | Gao J Y, You F Q. Design and optimization of shale gas energy systems: overview, research challenges, and future directions[J]. Computers & Chemical Engineering, 2017, 106(11): 699-718. |
110 | 王红秋, 乔明, 郑轶丹. 美“页岩气化工”重塑全球化工产业链[J]. 中国石油企业, 2017, 34(3): 73-74. |
Wang H Q, Qiao M, Zheng Y D. The “shale gas chemical industry” of USA reshapes global chemical industry chain [J]. China Petroleum Enterprise, 2017, 34(3): 73-74. | |
111 | 金瑞庭. 当前国际大宗商品价格走势及2020年展望[J]. 中国经贸导刊, 2020, 37(6): 24-25. |
Jin R T. Current international commodity price trends and prospects for 2020 [J]. China Economic & Trade Herald, 2020, 37 (6): 24-25. | |
112 | EIA. Annual energy outlook 2020[DB/OL]. [2020-10-08]. http:eia.gov/outlooks/aeo/. |
113 | Scholwin F, Grope J, Clinkscales A, et al. Biogas for road vehicles: technology brief[R]. United Arab Emirates: IRENA, 2018. |
114 | Chen L H, Frederiksen P, Li X, et al. Review of biogas models and key challenges in the further development in China[C]// 5th International Conference on Advances in Energy Resources and Environment Engineering. Chongqing, China, 2020. |
115 | Bordel S, Rodríguez Y, Hakobyan A, et al. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis[J]. Metabolic Engineering, 2019, 54(4): 191-199. |
116 | Tsapekos P, Zhu X Y, Pallis E, et al. Proteinaceous methanotrophs for feed additive using biowaste as carbon and nutrients source[J]. Bioresource Technology, 2020, 313(10): 123646. |
117 | Meruvu H, Wu H, Jiao Z Y, et al. From nature to nurture: essence and methods to isolate robust methanotrophic bacteria[J]. Synthetic and Systems Biotechnology, 2020, 5(3): 173-178. |
118 | EIA. Henry Hub natural gas spot price[DB/OL]. [2020-10-08]. http:eia.gov/dnav/ng/hist/rngwhhdD.htm. |
119 | Venkata Subhash G, Rajvanshi M, Navish Kumar B, et al. Carbon streaming in microalgae: extraction and analysis methods for high value compounds[J]. Bioresource Technology, 2017, 244: 1304-1316. |
120 | Qi M, Yao C H, Sun B H, et al. Application of an in situ CO2: bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis[J]. Biotechnology for Biofuels, 2019, 12(1): 184. |
121 | Hanifzadeh M, Sarrafzadeh M H, Nabati Z, et al. Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 866-873. |
122 | 张晨鼎. 2017年国外纯碱工业发展概况与趋势[J]. 纯碱工业, 2018, 56 (6): 3-7. |
Zhang C D. Development and trends on soda industry in foreign countries[J]. Soda Industry, 2018, 56 (6): 3-7. | |
123 | Molitor H R, Moore E J, Schnoor J L. Maximum CO2 utilization by nutritious microalgae[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9474-9479. |
124 | Williams P J L B, Laurens L M L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J]. Energy & Environmental Science, 2010, 3(5): 554-590. |
125 | Hoffman J, Pate R C, Drennen T, et al. Techno-economic assessment of open microalgae production systems[J]. Algal Research, 2017, 23(4): 51-57. |
126 | Pavlik D, Zhong Y K, Daiek C, et al. Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system[J]. Algal Research, 2017, 25(7): 413-420. |
127 | Gerber L N, Tester J W, Beal C M, et al. Target cultivation and financing parameters for sustainable production of fuel and feed from microalgae[J]. Environmental Science & Technology, 2016, 50(7): 3333-3341. |
128 | Penloglou G, Chatzidoukas C, Kiparissides C. A microalgae-based biorefinery plant for the production of valuable biochemicals: design and economics[C]// 26th European Symposium on Computer Aided Process Engineering. Portoroz, Slovenia, 1731-1736. |
129 | Banerjee S, Ramaswamy S. Dynamic process model and economic analysis of microalgae cultivation in flat panel photobioreactors[J]. Algal Research, 2019, 39(5): 101445. |
130 | Rezvani S, Kennedy C, Moheimani N R. Techno-economic study of multi-product resource scenarios for Pleurochrysis carterae grown in open ponds in Western Australia[J]. Algal Research, 2019, 39(5): 101456. |
131 |
Mohammady N G E, El-Khatib K M, El-Galad M I, et al. Preliminary study on the economic assessment of culturing Nannochloropsis sp. in Egypt for the production of biodiesel and high-value biochemicals[J]. Biomass Conversion and Biorefinery, 2020, 10(2), doi:10.1007/s13399-020-00878-9.
DOI URL |
132 | Manganaro J L, Lawal A, Goodall B. Techno-economics of microalgae production and conversion to refinery-ready oil with co-product credits[J]. Biofuels, Bioproducts and Biorefining, 2015, 9(6): 760-777. |
133 | Lum K K, Kim J, Lei X G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed[J]. Journal of Animal Science and Biotechnology, 2013, 4(1): 53. |
134 | Valiorgue P, Ben Hadid H, El Hajem M, et al. CO2 mass transfer and conversion to biomass in a horizontal gas-liquid photobioreactor[J]. Chemical Engineering Research and Design, 2014, 92(10): 1891-1897. |
135 | Kadam K L. Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options[J]. Energy Conversion and Management, 1997, 38: S505-S510. |
136 | Vidyashankar S, VenuGopal K S, Chauhan V S, et al. Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed[J]. Journal of Applied Phycology, 2015, 27(5): 1871-1879. |
137 | Soto-Sierra L, Kulkarni S, Woodard S L, et al. Processing of permeabilized Chlorella vulgaris biomass into lutein and protein-rich products[J]. Journal of Applied Phycology, 2020, 32(3): 1697-1707. |
138 | Chua E T, Schenk P M. A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein[J]. Bioresource Technology, 2017, 244: 1416-1424. |
139 | Pikaar I, de Vrieze J, Rabaey K, et al. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: potentials and limitations[J]. Science of the Total Environment, 2018, 644(23): 1525-1530. |
140 | Duffy P B, Field C B, Diffenbaugh N S, et al. Strengthened scientific support for the endangerment finding for atmospheric greenhouse gases[J]. Science, 2019, 363(6427): eaat5982. |
141 | Petersen L A H, Villadsen J, Jørgensen S B, et al. Mixing and mass transfer in a pilot scale U-loop bioreactor[J]. Biotechnology and Bioengineering, 2017, 114(2): 344-354. |
142 | Zechter R, Kossoy A, Oppermann K, et al. State and trends of carbon pricing 2017[R]. USA: World-Bank-Group, 2017. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[8] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[9] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[10] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[11] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[12] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[13] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[14] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
[15] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||