化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 146-152.doi: 10.11949/0438-1157.20201616

• 流体力学与传递现象 • 上一篇    下一篇

一种带引射器和经济器的CO2跨临界制冷系统

李敏霞(),詹浩淼,王派,刘雪涛,李昱翰,马一太   

  1. 天津大学中低温热能高效利用教育部重点实验室,天津 300350
  • 收稿日期:2020-11-10 修回日期:2021-02-05 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 李敏霞 E-mail:tjmxli@tju.edu.cn
  • 作者简介:李敏霞(1971—),女,博士,教授,tjmxli@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51876135);空调设备及系统运行节能国家重点实验室开放基金项目(ACSKL2018KT02)

A CO2 transcritical refrigeration system with ejector and economizer

LI Minxia(),ZHAN Haomiao,WANG Pai,LIU Xuetao,LI Yuhan,MA Yitai   

  1. Low and Medium Grade Energy of Ministry of Education, Tianjin University, Tianjin 300350, China
  • Received:2020-11-10 Revised:2021-02-05 Published:2021-06-20 Online:2021-06-20
  • Contact: LI Minxia E-mail:tjmxli@tju.edu.cn

摘要:

在蒸发温度较低的工况下,CO2跨临界循环高低压差过大,运行效率下降。针对CO2跨临界循环特性,提出了一种带引射器和经济器的CO2跨临界制冷系统,通过引射器部分回收工质膨胀功减小能量损失,可增加制冷量;合理设计CO2压缩机和中间补气孔,采用经济器进行中间补气可减少系统压缩过程的能量损失。构建了热力学模型,研究表明该系统在较低蒸发温度工况下,相比于基础CO2跨临界制冷系统系统性能可提升40%左右,其中压缩机排气温度可降低40℃左右,有利于系统稳定运行。同时对准二级压缩过程中分段效率计算问题提出近似公式,在一定范围内相比于传统计算方式误差从5%降低至2%。

关键词: 二氧化碳, 跨临界循环, 引射器, 经济器, 中间补气

Abstract:

Under the condition of low evapouration temperature, the difference between the highest and the lowest pressure of CO2 transcritical cycle is excessively large, and the operating efficiency decreases. For CO2 transcritical cycle characteristics, a CO2 transcritical refrigeration system with an ejector and an economiser is proposed. Recycling part of the refrigerant expansion work using the ejector reduces energy loss and increases the refrigerating capacity. Better design of the CO2 compressor and the vapour injection port, and use of economizer for intermediate air supplement can reduce the energy loss of the system compression process. Research shows that the system performance can be increased by about 40% compared with the basic CO2 transcritical refrigeration system under the condition of lower evaporating temperature,the compressor discharge temperature can be reduced by about 40℃, which is conducive to the stable operation of the system. And an approximate formula is proposed for the calculation of the segmentation efficiency in the quasi-two-stage compression process, and the error is reduced from 5% to 2% in a certain range compared with the traditional calculation method.

Key words: carbon dioxide, transcritical cycle, ejector, economiser, vapour injection

中图分类号: 

  • TB 657

图1

系统流程"

图2

系统热力p-h图"

图3

引射器系统"

图4

引射器系统热力p-h图"

图5

经济器系统"

图6

经济器系统热力p-h图"

图7

带引射器和经济器系统性能变化情况"

图8

蒸发温度对带引射器和经济器系统性能影响"

图9

不同系统排气温度变化情况"

1 武孟. 二氧化碳跨临界循环特性及系统控制研究[D]. 长沙: 中南大学, 2009.
Wu M. Carbon dioxide transcritical cycle characteristics and system control research [D]. Changsha: Central South University, 2009.
2 邬志敏. 经济器螺杆制冷压缩机补气和排气孔口的确定[J]. 制冷学报, 1984, 5(2): 10-17.
Wu Z M. Determination of the position of the intermediate charge and discharge ports in the screw refrigerating compressor with economizer [J]. Journal of Refrigeration, 1984, 5(2): 10-17.
3 马国远, 邵双全. 寒冷地区空调用热泵的研究[J]. 太阳能学报, 2002, 23(1): 17-21.
Ma G Y, Shao S Q. Research on heat pump cycle for air conditioning in cold regions [J]. Acta Energiae Solaris Sinica, 2002, 23(1): 17-21.
4 赵会霞, 刘思光, 马国远, 等. 涡旋压缩机闪发器热泵系统的试验研究[J]. 太阳能学报, 2006, 27(4): 377-381.
Zhao H X, Liu S G, Ma G Y, et al. Experimental study on heat pump system with scroll compressor flash-tank [J]. Acta Energiae Solaris Sinica, 2006, 27(4): 377-381.
5 Ma G Y, Chai Q H, Jiang Y. Experimental investigation of air-source heat pump for cold regions [J]. International Journal of Refrigeration, 2003, 26(1): 12-18.
6 柴沁虎, 马国远. 空气源热泵低温适应性研究的现状及进展[J]. 能源工程, 2002, (5): 25-31.
Chai Q H, Ma G Y. State of knowledge and current challenges in the ASHP developed for the cold areas [J]. Energy Engineering, 2002, (5): 25-31.
7 Zogg M. The swiss retrofit heat pump programme [C]// 7th International Energy Agency Conference on Heat Pumping Technologies. Beijing, 2002: 209-218.
8 马国远, 彦启森. 涡旋压缩机经济器系统的性能分析[J]. 制冷学报, 2003, 24(3): 20-24.
Ma G Y, Yan Q S. Thermodynamic bebavior of scroll compressor with economizer for heat pump [J]. Refrigeration Journal, 2003, 24(3): 20-24.
9 谢英柏, 孙刚磊, 刘春涛, 等. CO2跨临界双级压缩制冷循环的热力学分析[J]. 化工学报, 2008, 59(12): 2985-2989.
Xie Y B, Sun G L, Liu C T, et al. Thermodynamic analysis of CO2 trans-critical two-stage compression refrigeration cycle [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(12): 2985-2989.
10 Lorentzen G. Revival of carbon dioxide as a refrigerant [J]. International Journal of Refrigeration, 1994, 17(5): 292-301.
11 索科洛夫Е Я, 津格尔Н М. 喷射器[M]. 黄秋云, 译. 北京: 科学出版社, 1977.
Sokolov E Я, Zenger H M. Ejector [M]. Huang Q Y, trans. Beijing: Science Press, 1977.
12 陆宏圻. 射流泵技术的理论及应用[M]. 北京: 水利电力出版社, 1989.
Lu H Y. The Theory and Application of Jet Pump Technology [M]. Beijing: Water Power Press, 1989.
13 范晓伟. 新型压缩/喷射制冷循环的研究[D]. 西安: 西安交通大学, 1997.
Fan X W. Research on a new type of compression/jet hybrid refrigeration cycle [D]. Xi'an: Xi'an Jiaotong University, 1997.
14 范晓伟, 阴建民, 陈钟颀. 一种二级压缩/喷射制冷循环[J]. 郑州纺织工学院学报, 1995, 6(4): 10-14+20.
Fan X W, Yin J M, Chen Z Q. A kind of two-stage compression/ejection refrigeration cycle [J]. Journal of Zhengzhou Textile Institute, 1995, 6(4): 10-14+20.
15 范晓伟, 阴建民, 刘海峰, 等. 一种新型蒸气压缩/喷射混合制冷循环的探讨[J]. 西安交通大学学报, 1996, 30(5): 5-11.
Fan X W, Yin J M, Liu H F, et al. Study on a new kind of vapor-compression/ejection hybrid refrigeration cycle [J]. Journal of Xi'an Jiaotong University, 1996, 30(5): 5-11.
16 吴江涛, 刘志刚, 郭航, 等. 新型蒸气压缩/喷射制冷循环的热力学分析[J]. 流体机械, 2000, 28(8): 47-49.
Wu J T, Liu Z G, Guo H, et al. Thermodynamic analysis of a new vapor compression/ejection refrigeration cycle [J]. Fluid Machinery, 2000, 28(8): 47-49.
17 许树学, 马国远, 彭珑. 准二级压缩-喷射热泵的设计与实验研究[J]. 化学工程, 2010, 38(1): 99-102.
Xu S X, Ma G Y, Peng L. Experimental research and design of quasi two-stage heat pump system coupled with ejector [J]. Chemical Engineering (China), 2010, 38(1): 99-102.
18 费继友, 曹锋, 邢子文, 等. 吸气喷液对空气源热泵热水器性能的影响[J]. 西安交通大学学报, 2008, 42(7): 818-822.
Fei J Y, Cao F, Xing Z W, et al. Influence of suction stream liquid refrigeration injection on the performance of an air-source heat pump water heater [J]. Journal of Xi'an Jiaotong University, 2008, 42(7): 818-822.
19 沈志勇. 微小型蒸汽喷射器的数值模拟和优化研究[D]. 上海: 东华大学, 2007.
Shen Z Y. Numerical simulation and optimization study of small-sized steam ejector [D]. Shanghai: Donghua University, 2007.
20 Zhang Z Y, Ma Y T, Wang H L, et al. Theoretical evaluation on effect of internal heat exchanger in ejector expansion transcritical CO2 refrigeration cycle [J]. Applied Thermal Engineering, 2013, 50(1): 932-938.
21 马一太, 管海清, 杨俊兰, 等. 带引射器和经济器的CO2跨临界制冷系统[J]. 工程热物理学报, 2005, 26(2): 189-192.
Ma Y T, Guan H Q, Yang J L, et al. Ejector combined with economizer adopted in CO2 transcritical cycle refrigeration system [J]. Journal of Engineering Thermophysics, 2005, 26(2): 189-192.
22 李敏霞, 吕岩, 李双俊. CO2二元混合物压缩/引射制冷循环性能研究[J]. 化学工程, 2017, 45(8): 27-32.
Li M X, Lyu Y, Li S J. Performance of binary mixture of CO2 in compression/ejection refrigeration cycle [J]. Chemical Engineering (China), 2017, 45(8): 27-32.
23 Ma X L, Zhang W, Omer S A, et al. Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications [J]. Applied Thermal Engineering, 2010, 30(11/12): 1320-1325.
24 Varga S, Oliveira A C, Ma X L, et al. Experimental and numerical analysis of a variable area ratio steam ejector [J]. International Journal of Refrigeration, 2011, 34(7): 1668-1675.
25 Vereda C, Ventas R, Lecuona A, et al. Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions [J]. Applied Energy, 2012, 97: 305-312.
26 唐逸飞, 赵军. 带经济器的空气源热泵系统研究综述[J]. 轻工机械, 2018, 36(4): 93-99.
Tang Y F, Zhao J. Study on air source heat pump system with economizer [J]. Light Industry Machinery, 2018, 36(4): 93-99.
27 俞丽华. 准二级压缩—喷射复合热泵系统的性能模拟与实验研究[D]. 北京: 北京工业大学, 2006.
Yu L H. Simulation and experiment study on the quasi two-stage compression heat pump system coupled with ejector [D]. Beijing: BeijingUniversity of Technology, 2006.
28 杨俊兰, 李久东, 唐嘉宝. 不同型式CO2跨临界循环模拟计算与性能研究[J]. 太阳能学报, 2017, 38(9): 2459-2466.
Yang J L, Li J D, Tang J B. Performance research and simulation calculation for different types of CO2 transcritical cycles [J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2459-2466.
29 许树学. 带喷射器的经济补气热泵系统循环机理与特性研究[D]. 北京: 北京工业大学, 2010.
Xu S X. Research on mechanism and performance of economized vapor injection heat pump system coupled with ejector [D]. Beijing: BeijingUniversity of Technology, 2010.
30 管海清, 马一太, 杨俊兰, 等. 带节能器的CO2跨临界循环制冷系统[J]. 天津大学学报, 2005, 38(6): 481-484.
Guan H Q, Ma Y T, Yang J L, et al. CO2 transcritical cycle refrigeration system with economizer [J]. Journal of Tianjin University, 2005, 38(6): 481-484.
[1] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[2] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[3] 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919.
[4] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[5] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[6] 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
[7] 汪森林, 李照志, 邵应娟, 钟文琪. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082.
[8] 王小西, 李笑艳, 王保伟. 介质阻挡放电微等离子体分解二氧化碳研究[J]. 化工学报, 2022, 73(3): 1343-1350.
[9] 黄子轩, 陈欢, 李海, 王明龙, 陈光进, 刘蓓. ZIF-8浆液中试分离CO2/N2过程模拟及能耗分析[J]. 化工学报, 2022, 73(1): 322-331.
[10] 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392.
[11] 陈一宇, 朱春英, 付涛涛, 马友光. 三维菱形结构微通道内气液传质与强化[J]. 化工学报, 2022, 73(1): 175-183.
[12] 庞子凡, 蒋斌, 朱春英, 马友光, 付涛涛. 微通道内CO2吸收与传质及资源化利用的研究进展[J]. 化工学报, 2022, 73(1): 122-133.
[13] 王乾浩, 赵璐, 孙付琳, 房克功. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265.
[14] 高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420.
[15] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!