化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3869-3879.doi: 10.11949/0438-1157.20201825

• 材料化学工程与纳米技术 • 上一篇    下一篇

氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能

肖弦1(),徐文昊1,沈亮1,2(),王远鹏1,2,卢英华1,2   

  1. 1.厦门大学化学化工学院,福建 厦门 361005
    2.厦门市合成生物技术重点实验室,福建 厦门 361005
  • 收稿日期:2020-12-15 修回日期:2021-04-04 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 沈亮 E-mail:hhuxiaoxian@163.com;shenliang@xmu.edu.cn
  • 作者简介:肖弦(1997—),女,硕士研究生,hhuxiaoxian@163.com
  • 基金资助:
    国家自然科学基金项目(22038012);中央高校基本科研业务费专项资金(20720200053)

Preparation and electrochemical properties of new porous carbon materials by synthesizing graphene oxide and waste activated sludge

XIAO Xian1(),XU Wenhao1,SHEN Liang1,2(),WANG Yuanpeng1,2,LU Yinghua1,2   

  1. 1.College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    2.The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen 361005, Fujian, China
  • Received:2020-12-15 Revised:2021-04-04 Published:2021-07-05 Online:2021-07-05
  • Contact: SHEN Liang E-mail:hhuxiaoxian@163.com;shenliang@xmu.edu.cn

摘要:

石墨烯是导电性良好的二维材料,但易重新堆叠而导致导电率和电容量下降。氧化石墨烯(GO)的生物相容性和细菌的胶体特性可使二者在水溶液中聚集为三维石墨烯基材料。将剩余活性污泥与GO悬浮液共培养形成活性污泥石墨烯水凝胶(SGH),剩余活性污泥中的细菌可将GO还原为导电的rGO。SGH经冻干可得到具有良好亲水性和导电性的O、N自掺杂多孔材料,即活性污泥石墨烯气凝胶(SGA)。在氩气中高温退火可进一步提高材料的电化学性能。经700℃、2 h退火后的改性SGA(ANSGA)具有174 F/g的比电容值(2 A/g),以及优异的倍率性能、离子传输性能和循环稳定性,具有进一步加工制备电极材料的应用潜力,为石墨烯基材料绿色制备和剩余活性污泥资源化利用提供方向。

关键词: 剩余活性污泥, 石墨烯, 水凝胶, 细菌, 电化学

Abstract:

Graphene is a special two-dimensional material with excellent conductivity. However, graphene sheets would easily agglomerate, leading to a large decrease in its conductivity and capacitance. In this study, a three-dimensional activated sludge graphene hydrogel (SGH) was formed by mixing the suspension of graphene oxide (GO) and domesticated waste activated sludge, due to the biocompatibility of GO and the colloidal properties of bacteria. GO was reduced to conductive reduced graphene oxide (rGO) during the formation of hydrogel. SGH can be lyophilized to obtain a porous O and N self-doped porous material with good hydrophilicity and conductivity, namely activated sludge graphene aerogel (SGA). The annealing process in high temperature was found a crucial factor in improving the electrochemical properties of SGA. The specific capacitance of the modified SGA (ANSGA) was increased to 174 F/g at a current density of 2 A/g, after annealing in argon gas with 700℃, 2 h. In addition, the excellent rate capability, ion transport properties and cycling stability make ANSGA a promising material for the probable use of processing electrode materials, which points to a green and dual-beneficial way to produce graphene-based materials and reuse waste activated sludge.

Key words: waste activated sludge, graphene, hydrogel, bacteria, electrochemistry

中图分类号: 

  • TQ 028.8

图1

SGH自组装过程的示意图"

图2

GO(a)和SGH中rGO(SGH-rGO) (b)的XPS光谱图"

图3

GO与SGH-rGO的红外光谱图(a),XRD谱图(b),拉曼光谱图(c)"

图4

0 s时SGA的接触角(a);9 s时SGA的接触角(b);GO和SGA-rGO的FTIR光谱图(c);GO(d)和SGA-rGO(e)的XPS C 1s光谱图"

图5

SGA的XPS谱图"

图6

SGA[(a)~(c)]和ANSGA[(d)~(f)]的扫描电镜图"

图7

基于退火后的SGH的电化学性能:循环伏安测试(a);不同电流密度下恒流充放电测试(b);不同电流密度下的比电容(c);21 A/g下的循环稳定性测试(d)"

表1

石墨烯基碳材料的比电容、电容保留率及掺氮量的对比"

主要材料比电容/(F/g)电容保留率/%掺氮量/%(质量)文献
GO/ammonia water233.3(0.5 A/g)64.3(20 A/g)4.4[31]
GO/NH3175(2 A/g)53.8(6 A/g)3.97[32]
GO/uric acid196(2 A/g)79.1(3 A/g)5.63[33]
GO/MnCo2O4/DMF95.1(2 A/g)65.2(4 A/g)4.14[34]
GO/CuO/NH4NO3197(5 A/g)57.9(5 A/g)4.54[35]
GO/Fe3O4/Mn2O3/N2H490.58(0.5 A/g)80.7(2.5 A/g)[36]
GO/FeCl3/E.coli224(2 A/g)51.3(5 A/g)5.58[37]
ANSGA(GO/activated sludge)174(2 A/g)74.7(48 A/g)5.61本文

图8

基于SGA及ANSGA的电化学性能:50 mV/s下循环伏安曲线(a); SGA的循环伏安测试(b); 2 A/g下恒流充放电曲线(c);不同电流密度下的比电容(d)"

1 Yuan S J, Dai X H. Sewage sludge-based functional nanomaterials: development and applications[J]. Environmental Science: Nano, 2017, 4(1): 17-26.
2 Feng H B, Zheng M T, Dong H W, et al. Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge[J]. Journal of Materials Chemistry A, 2015, 3(29): 15225-15234.
3 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
4 Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204.
5 Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
6 Ma Y F, Chen Y S. Three-dimensional graphene networks: synthesis, properties and applications[J]. National Science Review, 2015, 2(1): 40-53.
7 Wang Y, Wei Z D, Nie Y, et al. Generation of three dimensional pore-controlled nitrogen-doped graphene hydrogels for high-performance supercapacitors by employing formamide as the modulator[J]. Journal of Materials Chemistry A, 2017, 5(4): 1442-1445.
8 Ruiz O N, Fernando K A, Wang B, et al. Graphene oxide: a nonspecific enhancer of cellular growth[J]. ACS Nano, 2011, 5(10): 8100-8107.
9 Chen J, Deng F, Hu Y Y, et al. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell[J]. Journal of Power Sources, 2015, 290: 80-86.
10 Yoshida N, Miyata Y, Mugita A, et al. Electricity recovery from municipal sewage wastewater using a hydrogel complex composed of microbially reduced graphene oxide and sludge[J]. Materials, 2016, 9(9): E742.
11 Xu W H, Jin Z H, Pang X, et al. Interaction between biocompatible graphene oxide and live shewanella in the self-assembled hydrogel: the role of physicochemical properties[J]. ACS Applied Bio Materials, 2020, 3(7): 4263-4272.
12 周群英, 王士芬. 环境工程微生物学[M]. 3版. 北京: 高等教育出版社, 2018.
Zhou Q Y, Wang S F. Microbiology of Environmental Engineering[M]. 3rd ed. Beijing: Higher Education Press, 2018.
13 Shen L, Hu H Y, Ji H F, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from excess activated sludge as a promising substitute of pure culture[J]. Bioresource Technology, 2015, 189: 236-242.
14 Shen L, Yuan X, Shen W H, et al. Positive impact of biofilm on reducing the permeation of ampicillin through membrane for membrane bioreactor[J]. Chemosphere, 2014, 97: 34-39.
15 Shen L, Jin Z H, Wang D, et al. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel[J]. Chemosphere, 2018, 190: 201-210.
16 Shen L, Jin Z H, Xu W H, et al. Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7817-7824.
17 Salas E C, Sun Z, Lüttge A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS Nano, 2010, 4(8): 4852-4856.
18 Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
19 Wang D, Jin Z H, Pang X, et al. Fabrication and functionalization of biological graphene aerogel by reusing microorganism in activated sludge and ionic dyes[J]. Chemical Engineering Journal, 2020, 392: 124823.
20 Wei Y, Hu X Y, Jiang Q R, et al. Influence of graphene oxide with different oxidation levels on the properties of epoxy composites [J]. Composites Science and Technology, 2018, 161: 74-84.
21 Sui Z Y, Meng Q H, Li J T, et al. High surface area porous carbons produced by steam activation of graphene aerogels[J]. Journal of Materials Chemistry A, 2014, 2(25): 9891-9898.
22 Chen J, Zhang Y, Zhang M, et al. Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups[J]. Chemical Science, 2016, 7(3): 1874-1881.
23 Zhao J, Li Y J, Wang G L, et al. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes[J]. Journal of Materials Chemistry A, 2017, 5(44): 23085-23093.
24 Wu J F, Zhang Q N, Wang J J, et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors[J]. Energy & Environmental Science, 2018, 11(5): 1280-1286.
25 Smith K M, Fowler G D, Pullket S, et al. Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications[J]. Water Research, 2009, 43(10): 2569-2594.
26 Zhou Q Y, Jiang X, Li X, et al. Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene[J]. RSC Advances, 2018, 8(53): 30171-30179.
27 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J]. 物理化学学报, 2020, 36(2): 142-149.
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 142-149.
28 Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials, 2019, 34(2): 132-139.
29 Tajik S, Dubal D P, Gomez-Romero P, et al. Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: facile synthetic strategy[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12384-12395.
30 Gao F, Qin S H, Zang Y H, et al. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries[J]. New Carbon Materials, 2020, 35(2): 121-130.
31 Du X S, Zhou C F, Liu H Y, et al. Facile chemical synthesis of nitrogen-doped graphene sheets and their electrochemical capacitance[J]. Journal of Power Sources, 2013, 241: 460-466.
32 Li D L, Yu C Z, Wang M S, et al. Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors[J]. RSC Advances, 2014, 4(98): 55394-55399.
33 Wang X Q, Ding Y J, Chen F, et al. Hierarchical porous N-doped graphene monoliths for flexible solid-state supercapacitors with excellent cycle stability[J]. ACS Applied Energy Materials, 2018, 1(9): 5024-5032.
34 Pettong T, Iamprasertkun P, Krittayavathananon A, et al. High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34045-34053.
35 Li Y J, Ye K, Cheng K, et al. Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors[J]. Journal of Electroanalytical Chemistry, 2014, 727: 154-162.
36 Chong B, Azman N, Mohd Abdah M, et al. Supercapacitive performance of N-doped graphene/Mn3O4/Fe3O4 as an electrode material[J]. Applied Sciences, 2019, 9(6): 1040.
37 Sun H M, Cao L Y, Lu L H. Bacteria promoted hierarchical carbon materials for high-performance supercapacitor[J]. Energy & Environmental Science, 2012, 5(3): 6206-6213.
38 Wang Z C, Wang Y, Shu X, et al. Hierarchical three-dimensional MnO2/carbon@TiO2 nanotube arrays for high-performance supercapacitors[J]. RSC Advances, 2016, 6(68): 63642-63651.
[1] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[2] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[3] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[4] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[5] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[6] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[7] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[8] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[9] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
[10] 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806.
[11] 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816.
[12] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[13] 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146.
[14] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[15] 居涛, 李国辉, 耿凤霞. 一步法合成二维Ti3C2及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!