化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3590-3600.DOI: 10.11949/0438-1157.20201941
王雅丽1(),付友思1,陈俊宏1,黄佳城1,廖浪星1,张永辉4,方柏山1,2,3()
收稿日期:
2020-12-30
修回日期:
2021-04-26
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
方柏山
作者简介:
王雅丽(1990—),女,博士研究生,基金资助:
WANG Yali1(),FU Yousi1,CHEN Junhong1,HUANG Jiacheng1,LIAO Langxing1,ZHANG Yonghui4,FANG Baishan1,2,3()
Received:
2020-12-30
Revised:
2021-04-26
Online:
2021-07-05
Published:
2021-07-05
Contact:
FANG Baishan
摘要:
计算机在酶工程中的应用使得酶的序列空间探索度不断被扩大。随着不同分子力场参数的建立,涌现出诸多以计算分子能量为基础的算法,并被用于酶的催化活性、稳定性、底物特异性等的改造与筛选。伴随计算机硬件的提升与算法的优化,从头设计全新功能的人工酶取得成功并得以发展。近年来,人工智能在蛋白质结构预测上不断获得突破,同时也被应用到酶的设计中。介绍了分子力场基础和酶设计与筛选的算法,重点阐述了从头设计的方法和成功案例,以及机器学习设计酶的流程和最新的研究进展,展望了人工智能在酶工程领域的未来发展,为酶的改造与全新功能的生物催化剂的设计助力。
中图分类号:
王雅丽,付友思,陈俊宏,黄佳城,廖浪星,张永辉,方柏山. 酶工程:从人工设计到人工智能[J]. 化工学报, 2021, 72(7): 3590-3600.
WANG Yali,FU Yousi,CHEN Junhong,HUANG Jiacheng,LIAO Langxing,ZHANG Yonghui,FANG Baishan. Enzyme engineering: from artificial design to artificial intelligence[J]. CIESC Journal, 2021, 72(7): 3590-3600.
1 | Fischer E. Über Die Glucoside der Alkohole[M]//Untersuchungen Über Kohlenhydrate und Fermente (1884—1908). Berlin, Heidelberg: Springer, 1909: 682-694. |
2 | Sumner J B. The isolation and crystallization of the enzyme urease: preliminary paper[J]. Journal of Biological Chemistry, 1926, 69(2): 435-441. |
3 | Northrop J H. Crystalline pepsin(Ⅰ): Isolation and tests of purity[J]. The Journal of General Physiology, 1930, 13(6): 739-766. |
4 | Stanley W M, Loring H S. The isolation of crystalline tobacco mosaic virus protein from diseased tomato plants[J]. Science, 1936, 83(2143): 85. |
5 | Sanger F, Tuppy H. The amino-acid sequence in the phenylalanyl chain of insulin(2): The investigation of peptides from enzymic hydrolysates[J]. Biochemical Journal, 1951, 49(4): 481-490. |
6 | Sanger F, Thompson E O P. The amino-acid sequence in the glycyl chain of insulin(2): The investigation of peptides from enzymic hydrolysates[J]. Biochemical Journal, 1953, 53(3): 366-374. |
7 | Phillips D C. The hen egg-white lysozyme molecule [J]. PNAS, 1967,57(3): 483-495. |
8 | Watson H C, Kendrew J C. Comparison between the amino-acid sequences of sperm whale myoglobin and of human hemoglobin[J]. Nature, 1961, 190(4777): 670-672. |
9 | Koshland D E. The key-lock theory and the induced fit theory[J]. Angewandte Chemie International Edition, 1995, 33(23/24): 2375-2378. |
10 | Chakraborty P, Di Cera E. Induced fit is a special case of conformational selection[J]. Biochemistry, 2017, 56(22): 2853-2859. |
11 | Prokop Z, Gora A, Brezovsky J, et al. Engineering of protein tunnels: keyhole-lock-key model for catalysis by the enzymes with active sites[M]//Lutz S, Bornscheuer U T. Protein Engineering Handbook. Wiley-VCH, 2012: 421-464. |
12 | Hall B G. Regulation of newly evolved enzymes(Ⅳ): Directed evolution of the Ebg repressor[J]. Genetics, 1978, 90(4): 673-681. |
13 | Chen K, Arnold F H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J]. PNAS, 1993, 90(12): 5618-5622. |
14 | Ozimek L K, van Hijum S A F T, van Koningsveld G A, et al. Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121[J]. FEBS Letters, 2004, 560(1/2/3): 131-133. |
15 | Griswold K E, Kawarasaki Y, Ghoneim N, et al. Evolution of highly active enzymes by homology-independent recombination[J]. PNAS, 2005, 102(29): 10082-10087. |
16 | Mukherjee S. Isolation and purification of industrial enzymes: advances in enzyme technology[M]//Advances in Enzyme Technology. Amsterdam: Elsevier, 2019: 41-70. |
17 | Bornscheuer U T, Hauer B, Jaeger K E, et al. Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals[J]. Angewandte Chemie International Edition, 2019, 58(1): 36-40. |
18 | Kohn W. De novo design of α-helical coiled coils and bundles: models for the development of protein-design principles[J]. Trends in Biotechnology, 1998, 16(9): 379-389. |
19 | Simons K T, Bonneau R, Ruczinski I, et al. Ab initio protein structure prediction of CASP III targets using ROSETTA[J]. Proteins: Structure, Function, and Genetics, 1999, 37(S3): 171-176. |
20 | Zanghellini A. De novo computational enzyme design[J]. Current Opinion in Biotechnology, 2014, 29: 132-138. |
21 | Baker D. An exciting but challenging road ahead for computational enzyme design[J]. Protein Science, 2010, 19(10): 1817-1819. |
22 | Chowdhury R, Maranas C D. From directed evolution to computational enzyme engineering—a review[J]. AIChE Journal, 2020, 66(3): e16847. |
23 | Hilvert D. Design of protein catalysts[J]. Annual Review of Biochemistry, 2013, 82: 447-470. |
24 | Pauling L. Chemical achievement and hope for the future[J]. American Scientist, 1948, 36(1): 51. |
25 | Sheldon R A, Pereira P C. Biocatalysis engineering: the big picture[J]. Chemical Society Reviews, 2017, 46(10): 2678-2691. |
26 | Mackerell A D. Empirical force fields for biological macromolecules: overview and issues[J]. Journal of Computational Chemistry, 2004, 25(13): 1584-1604. |
27 | Senn H M, Thiel W. QM/MM methods for biomolecular systems[J]. Angewandte Chemie International Edition, 2009, 48(7): 1198-1229. |
28 | Apol E, Apostolov R, Berendsen H J C, et al. Gromacs User Manual (Version5.0-rc1)[M]. Sweden: Royal Institute of Technology and Uppsala University, 2014. |
29 | Brooks B R, Bruccoleri R E, Olafson B D, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations[J]. Journal of Computational Chemistry, 1983, 4(2): 187-217. |
30 | Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995, 117(19): 5179-5197. |
31 | Jorgensen W L, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin[J]. Journal of the American Chemical Society, 1988, 110(6): 1657-1666. |
32 | Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures [J]. PNAS, 2000, 97(19): 10383-10388. |
33 | Alford R F, Leaver-Fay A, Jeliazkov J R, et al. The Rosetta all-atom energy function for macromolecular modeling and design[J]. Journal of Chemical Theory and Computation, 2017, 13(6): 3031-3048. |
34 | Harder E, Damm W, Maple J, et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins[J]. Journal of Chemical Theory and Computation, 2016, 12(1): 281-296. |
35 | Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins[J]. Nat. Methods, 2017, 14(1): 71-73. |
36 | Robustelli P, Piana S, Shaw D E. Developing a molecular dynamics force field for both folded and disordered protein states[J].PNAS, 2018, 115(21): E4758-E4766. |
37 | Anfinsen C B. Principles that govern the folding of protein chains[J]. Science, 1973, 181(4096): 223-230. |
38 | Koga N, Koga N, Tatsumi-Koga R, et al. Principles for designing ideal protein structures[J]. Nature, 2012, 491(7423): 222-227. |
39 | Liu Y, Kuhlman B. RosettaDesign server for protein design[J]. Nucleic Acids Res., 2006, 34: W235-W238. |
40 | Chowdhury R, Ren T, Shankla M, et al. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore[J]. Nature Communications, 2018, 9(1): 3661. |
41 | Pantazes R J, Grisewood M J, Li T, et al. The iterative protein redesign and optimization (IPRO) suite of programs[J]. Journal of Computational Chemistry, 2015, 36(4): 251-263. |
42 | Świderek K, Tuñón I, Moliner V, et al. Computational strategies for the design of new enzymatic functions[J]. Archives of Biochemistry and Biophysics, 2015, 582: 68-79. |
43 | Schramm V L. Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes[J]. Annual Review of Biochemistry, 2011, 80: 703-732. |
44 | Schramm V L. Transition states and transition state analogue interactions with enzymes[J]. Accounts of Chemical Research, 2015, 48(4): 1032-1039. |
45 | Zanghellini A, Jiang L, Wollacott A M, et al. New algorithms and an in silico benchmark for computational enzyme design[J]. Protein Science, 2006, 15(12): 2785-2794. |
46 | Weitzner B D, Kipnis Y, Daniel A G, et al. A computational method for design of connected catalytic networks in proteins[J]. Protein Science, 2019, 28(12): 2036-2041. |
47 | Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions[J]. Journal of Molecular Biology, 2000, 295(2): 337-356. |
48 | Crick F H C, Kendrew J C. X-Ray analysis and protein structure[J]. Advances in Protein Chemistry, 1957, 12: 133-214. |
49 | Yee A A, Savchenko A, Ignachenko A, et al. NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins[J]. Journal of the American Chemical Society, 2005, 127(47): 16512-16517. |
50 | Zhang X, Jin L, Fang Q, et al. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry[J]. Cell, 2010, 141(3): 472-482. |
51 | Berman H M, Westbrook J, Feng Z, et al. The protein data bank[J]. Nucleic Acids Research, 2000, 28(1): 235-242. |
52 | Voigt C A, Martinez C, Wang Z G, et al. Protein building blocks preserved by recombination[J]. Nature Structural Biology, 2002, 9(7): 553-558. |
53 | Meyer M M, Hochrein L, Arnold F H. Structure-guided SCHEMA recombination of distantly related β-lactamases[J]. Protein Engineering, Design and Selection, 2006, 19(12): 563-570. |
54 | Bedbrook C N, Rice A J, Yang K K, et al. Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): E2624-E2633. |
55 | Smith M A, Arnold F H. Noncontiguous SCHEMA protein recombination[J]. Methods in Molecular Biology, 2014, 1179: 345-352. |
56 | Buchete N V, Straub J, Thirumalai D. Development of novel statistical potentials for protein fold recognition[J]. Current Opinion in Structural Biology, 2004, 14(2): 225-232. |
57 | Dong Q W, Wang X L, Lin L. Novel knowledge-based mean force potential at the profile level[J]. BMC Bioinformatics, 2006, 7(1): 1-13. |
58 | Xiong P, Hu X H, Huang B, et al. Increasing the efficiency and accuracy of the ABACUS protein sequence design method[J]. Bioinformatics, 2020, 36(1): 136-144. |
59 | Kozma D, Tusnády G E. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool[J]. BMC Bioinformatics, 2015, 16(1): 1-9. |
60 | Richter F, Leaver-Fay A, Khare S D, et al. De novo enzyme design using Rosetta3[J]. PLoS One, 2011, 6(5): e19230. |
61 | Leaver-Fay A, Tyka M, Lewis S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[J]. Methods in Enzymology, 2011, 487: 545-574. |
62 | Gainza P, Roberts K E, Georgiev I, et al. OSPREY: protein design with ensembles, flexibility, and provable algorithms[J]. Methods in Enzymology, 2013, 523: 87-107. |
63 | Rackers J A, Wang Z, Lu C, et al. Tinker 8: software tools for molecular design[J]. Journal of Chemical Theory and Computation, 2018, 14(10): 5273-5289. |
64 | Fischer A, Enkler N, Neudert G, et al. TransCent: computational enzyme design by transferring active sites and considering constraints relevant for catalysis[J]. BMC Bioinformatics, 2009, 10(1): 1-16. |
65 | Fazelinia H, Cirino P C, Maranas C D. OptGraft: a computational procedure for transferring a binding site onto an existing protein scaffold[J]. Protein Science, 2009, 18(1): 180-195. |
66 | Grisewood M J, Gifford N P, Pantazes R J, et al. OptZyme: computational enzyme redesign using transition state analogues[J]. PLoS One, 2013, 8(10): e75358. |
67 | Goldenzweig A, Goldsmith M, Hill S E, et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability[J]. Molecular Cell, 2016, 63(2): 337-346. |
68 | Goldenzweig A, Fleishman S J. Principles of protein stability and their application in computational design[J]. Annual Review of Biochemistry, 2018, 87: 105-129. |
69 | Chen C Y, Georgiev I, Anderson A C, et al. Computational structure-based redesign of enzyme activity[J]. PNAS, 2009, 106(10): 3764-3769. |
70 | Murphy P M, Bolduc J M, Gallaher J L, et al. Alteration of enzyme specificity by computational loop remodeling and design[J]. PNAS, 2009, 106(23): 9215-9220. |
71 | Khoury G A, Fazelinia H, Chin J W, et al. Computational design of Candida boidinii xylose reductase for altered cofactor specificity[J]. Protein Science, 2009, 18(10): 2125-2138. |
72 | García-Guevara F, Bravo I, Martínez-Anaya C, et al. Cofactor specificity switch in Shikimate dehydrogenase by rational design and consensus engineering[J]. Protein Engineering, Design & Selection, 2017, 30(8): 533-541. |
73 | Cui D B, Zhang L J, Jiang S Q, et al. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H)[J]. The FEBS Journal, 2015, 282(12): 2339-2351. |
74 | Grisewood M J, Hernández-Lozada N J, Thoden J B, et al. Computational redesign of acyl-ACP thioesterase with improved selectivity toward medium-chain-length fatty acids[J]. ACS Catalysis, 2017, 7(6): 3837-3849. |
75 | Wijma H J, Floor R J, Bjelic S, et al. Enantioselective enzymes by computational design and in silico screening[J]. Angewandte Chemie International Edition, 2015, 54(12): 3726-3730. |
76 | Cao L, Goreshnik I, Coventry B, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors[J]. Science, 2020, 370(6515): 426-431. |
77 | Chowdhury R, Allan M F, Maranas C D. OptMAVEn-2.0: de novo design of variable antibody regions against targeted antigen epitopes[J]. Antibodies, 2018, 7(3): 23. |
78 | Shen H, Fallas J A, Lynch E, et al. De novo design of self-assembling helical protein filaments[J]. Science, 2018, 362(6415): 705-709. |
79 | King N P, Bale J B, Sheffler W, et al. Accurate design of co-assembling multi-component protein nanomaterials[J]. Nature, 2014, 510(7503): 103-108. |
80 | Fallas J A, Ueda G, Sheffler W, et al. Computational design of self-assembling cyclic protein homo-oligomers[J]. Nature Chemistry, 2017, 9(4): 353-360. |
81 | Hsia Y, Bale J B, Gonen S, et al. Corrigendum: design of a hyperstable 60-subunit protein icosahedron[J]. Nature, 2016, 540(7631): 150. |
82 | Khare S D, Fleishman S J. Emerging themes in the computational design of novel enzymes and protein-protein interfaces[J]. FEBS Letters, 2013, 587(8): 1147-1154. |
83 | Vaissier Welborn V, Head-Gordon T. Computational design of synthetic enzymes[J]. Chemical Reviews, 2019, 119(11): 6613-6630. |
84 | Jiang L, Althoff E A, Clemente F R, et al. De novo computational design of retro-aldol enzymes[J]. Science, 2008, 319(5868): 1387-1391. |
85 | Röthlisberger D, Khersonsky O, Wollacott A M, et al. Kemp elimination catalysts by computational enzyme design[J]. Nature, 2008, 453(7192): 190-195. |
86 | Ehren J, Govindarajan S, Morón B, et al. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy[J]. Protein Engineering, Design and Selection, 2008, 21(12): 699-707. |
87 | Wijma H J, Fürst M J L J, Janssen D B. A computational library design protocol for rapid improvement of protein stability: FRESCO[J]. Methods in Molecular Biology, 2018, 1685:69-85. |
88 | Arabnejad H, Dal Lago M, Jekel P A, et al. A robust cosolvent-compatible halohydrin dehalogenase by computational library design[J]. Protein Engineering, Design and Selection, 2017, 30(3): 175-189. |
89 | Wijma H J, Floor R J, Jekel P A, et al. Computationally designed libraries for rapid enzyme stabilization[J]. Protein Engineering, Design and Selection, 2014, 27(2): 49-58. |
90 | Romero Pss A, Stone E, Lamb C, et al. SCHEMA-designed variants of human Arginase I and II reveal sequence elements important to stability and catalysis[J]. ACS Synthetic Biology, 2012, 1(6): 221-228. |
91 | Heinzelman P, Snow C D, Smith M A, et al. SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability[J]. Journal of Biological Chemistry, 2009, 284(39): 26229-26233. |
92 | Li R, Wijma H J, Song L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination[J]. Nature Chemical Biology, 2018, 14(7): 664-670. |
93 | Lin Y R, Koga N, Tatsumi-Koga R, et al. Control over overall shape and size in de novo designed proteins[J]. PNAS, 2015, 112(40): E5478-E5485. |
94 | Geiger-Schuller K, Sforza K, Yuhas M, et al. Extreme stability in de novo-designed repeat arrays is determined by unusually stable short-range interactions[J]. PNAS, 2018, 115(29): 7539-7544. |
95 | Lu P, Min D, DiMaio F, et al. Accurate computational design of multipass transmembrane proteins[J]. Science, 2018, 359(6379): 1042-1046. |
96 | Silva D A, Yu S, Ulge U Y, et al. De novo design of potent and selective mimics of IL-2 and IL-15[J]. Nature, 2019, 565(7738): 186-191. |
97 | Huang P S, Boyken S E, Baker D. The coming of age of de novo protein design[J]. Nature, 2016, 537(7620): 320-327. |
98 | Khersonsky O, Röthlisberger D, Dym O, et al. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series[J]. Journal of Molecular Biology, 2010, 396(4): 1025-1042. |
99 | Khersonsky O, Röthlisberger D, Wollacott A M, et al. Optimization of the in-silico-designed Kemp eliminase KE70 by computational design and directed evolution[J]. Journal of Molecular Biology, 2011, 407(3): 391-412. |
100 | Khersonsky O, Kiss G, Röthlisberger D, et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59[J]. PNAS, 2012, 109(26): 10358-10363. |
101 | Blomberg R, Kries H, Pinkas D M, et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase[J]. Nature, 2013, 503(7476): 418-421. |
102 | Siegel J B, Zanghellini A, Lovick H M, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction[J]. Science, 2010, 329(5989): 309-313. |
103 | Eiben C B, Siegel J B, Bale J B, et al. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players[J]. Nat. Biotechnol., 2012, 30(2): 190-192. |
104 | Lapidoth G, Khersonsky O, Lipsh R, et al. Highly active enzymes by automated combinatorial backbone assembly and sequence design[J]. Nature Communications, 2018, 9(1): 2780. |
105 | Der B S, Edwards D R, Kuhlman B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering[J]. Biochemistry, 2012, 51(18): 3933-3940. |
106 | Schwizer F, Okamoto Y, Heinisch T, et al. Artificial metalloenzymes: reaction scope and optimization strategies[J]. Chemical Reviews, 2018, 118(1): 142-231. |
107 | Skander M, Humbert N, Collot J, et al. Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated Rhodium-Diphosphine complexes[J]. Journal of the American Chemical Society, 2004, 126(44): 14411-14418. |
108 | Studer S, Hansen D A, Pianowski Z L, et al. Evolution of a highly active and enantiospecific metalloenzyme from short peptides[J]. Science, 2018, 362(6420): 1285-1288. |
109 | Bos J, Fusetti F, Driessen A J M, et al. Enantioselective artificial metalloenzymes by creation of a novel active site at the protein dimer interface[J]. Angewandte Chemie International Edition, 2012, 51(30): 7472-7475. |
110 | Bos J, Roelfes G. Artificial metalloenzymes for enantioselective catalysis[J]. Current Opinion in Chemical Biology, 2014, 19: 135-143. |
111 | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
112 | Mazurenko S, Prokop Z, Damborsky J. Machine learning in enzyme engineering[J]. ACS Catalysis, 2020, 10(2): 1210-1223. |
113 | Xu J. Distance-based protein folding powered by deep learning[J]. PNAS, 2019, 116(34): 16856-16865. |
114 | Siedhoff N E, Schwaneberg U, Davari M D. Machine learning-assisted enzyme engineering[J]. Methods in Enzymology, 2020, 643: 281-315. |
115 | Alley E C, Khimulya G, Biswas S, et al. Unified rational protein engineering with sequence-based deep representation learning[J]. Nature Methods, 2019, 16(12): 1315-1322. |
116 | Tallorin L, Wang J, Kim W E, et al. Discovering de novo peptide substrates for enzymes using machine learning[J]. Nature Communications, 2018, 9(1): 5253. |
117 | Yang K K, Wu Z, Bedbrook C N, et al. Learned protein embeddings for machine learning[J]. Bioinformatics, 2018, 34(15): 2642-2648. |
118 | Wu Z, Kan S B J, Lewis R D, et al. Machine learning-assisted directed protein evolution with combinatorial libraries[J]. PNAS, 2019, 116(18): 8852-8858. |
119 | Yang J Y, Anishchenko I, Park H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. PNAS, 2020, 117(3): 1496-1503. |
[1] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[2] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[3] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[4] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[5] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[6] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[7] | 周天航, 蓝兴英, 徐春明. 人工智能加速聚合物设计的最新进展和未来前景[J]. 化工学报, 2023, 74(1): 14-28. |
[8] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[9] | 张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
[10] | 姚翰林, 辛忠. 液相沉淀反应在管式微通道反应器中的流动行为研究[J]. 化工学报, 2022, 73(8): 3518-3528. |
[11] | 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805. |
[12] | 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193. |
[13] | 宋伟, 李万佳, 俞树荣, 马荣荣. 热力耦合下TC4合金微动磨损行为影响的研究[J]. 化工学报, 2022, 73(3): 1324-1334. |
[14] | 王中华, 郑淞生, 姚育栋, 陈日懿, 王兆林. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021. |
[15] | 牛卉芳, 闫伦靖, 吕鹏, 张旭峰, 王美君, 孔娇, 鲍卫仁, 常丽萍. 煤焦油沥青基碳气凝胶微球的制备及分析[J]. 化工学报, 2022, 73(12): 5605-5614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||