15 |
Ragesh P, Anand Ganesh V, Nair S V, et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2014, 2(36): 14773-14797.
|
16 |
Yang H, Lü X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT') in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42-53.
|
17 |
Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
|
18 |
Wang H Y, Zhu Y X, Hu Z Y, et al. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 303: 37-47.
|
19 |
Wang H X, Zhou H, Liu S, et al. Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings[J]. RSC Advances, 2017, 7(54): 33986-33993.
|
20 |
Cao N, Miao Y Y, Zhang D L, et al. Preparation of mussel-inspired perfluorinated polydopamine film on brass substrates: superhydrophobic and anti-corrosion application[J]. Progress in Organic Coatings, 2018, 125: 109-118.
|
21 |
Kang S M, You I, Cho W K, et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating[J]. Angewandte Chemie International Edition, 2010, 49(49): 9401-9404.
|
22 |
Yan X J, Zhu X W, Ruan Y T, et al. Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil-water separation[J]. Cellulose, 2020, 27(13): 7873-7885.
|
23 |
Zhang X Y, Wang H Y, Zhang X G, et al. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 239-247.
|
24 |
Wang W J, Wang J L, Wang X G, et al. Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in situ growing layered double hydroxides (LDHs) on polydopamine[J]. Progress in Organic Coatings, 2020, 149: 105930.
|
25 |
You I, Chang Seo Y, Lee H. Material-independent fabrication of superhydrophobic surfaces by mussel-inspired polydopamine[J]. RSC Advances, 2014, 4(20): 10330.
|
26 |
管国锋, 赵汝溥. 化工原理[M]. 4版. 北京: 化学工业出版社, 2015.
|
|
Guan G F, Zhao R P. Principles of Chemical Engineering[M]. 4th ed. Beijing: Chemical Industry Press, 2015.
|
27 |
Fei B, Qian B T, Yang Z Y, et al. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine[J]. Carbon, 2008, 46(13): 1795-1797.
|
1 |
Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020, 142: 105557.
|
2 |
Nguyen-Tri P, Tran H N, Plamondon C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review[J]. Progress in Organic Coatings, 2019, 132: 235-256.
|
3 |
Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surface and Coatings Technology, 2018, 341: 40-56.
|
4 |
郭瑞生, 魏强兵, 吴杨, 等. 材料表面润湿性调控及减阻性能研究[J]. 摩擦学学报, 2015, 35(1): 23-30.
|
|
Guo R S, Wei Q B, Wu Y, et al. Fabrication and drag reduction of controllable wetting surfaces[J]. Tribology, 2015, 35(1): 23-30.
|
5 |
Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643.
|
6 |
Chen H W, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nature Materials, 2018, 17(10): 935-942.
|
7 |
Hu Z Y, Wang H Y, Zhu Y X, et al. Rapid development of thickness-controllable superamphiphobic coating on the inner wall of long narrow pipes[J]. AIChE Journal, 2017, 63(9): 3636-3641.
|
8 |
汪怀远, 林丹, 张曦光, 等. 水性超疏水涂层的制备、调控与应用的研究进展[J]. 化工学报, 2021, 72(2): 669-680.
|
|
Wang H Y, Lin D, Zhang X G, et al. Research progress on preparation, regulation and application of waterborne superhydrophobic coatings[J]. CIESC Journal, 2021, 72(2): 669-680.
|
9 |
Nakayama K, Hiraga T, Zhu C Y, et al. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes[J]. Applied Surface Science, 2017, 423: 968-976.
|
10 |
Kumar A, Gogoi B. Development of durable self-cleaning superhydrophobic coatings for aluminium surfaces via chemical etching method[J]. Tribology International, 2018, 122: 114-118.
|
11 |
张发兴, 卫晓利, 肖忠良, 等. 超临界CO2快速膨胀法制备SiO2/聚氨酯超疏水涂层[J]. 化工学报, 2012, 63(7): 2290-2297.
|
|
Zhang F X, Wei X L, Xiao Z L, et al. Preparation of SiO2/PU superhydrophobic coating using rapid expansion of supercritical CO2[J]. CIESC Journal, 2012, 63(7): 2290-2297.
|
12 |
Mertsch O, Schondelmaier D, Rudolph I, et al. Generation and characterization of super-hydrophobic micro- and nano-structured surfaces[J]. Journal of Adhesion Science & Technology, 2008, 22(15): 1967-1983.
|
13 |
Ryu J H, Hong S, Lee H. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review[J]. Acta Biomaterialia, 2015, 27: 101-115.
|
14 |
Low W C, Rujitanaroj P O, Lee D K, et al. Mussel-inspired modification of nanofibers for REST siRNA delivery: understanding the effects of gene-silencing and substrate topography on human mesenchymal stem cell neuronal commitment[J]. Macromolecular Bioscience, 2015, 15(10): 1457-1468.
|
28 |
Morais A, Silveira G, Villis P C M, et al. Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid[J]. Journal of Solid State Electrochemistry, 2012, 16(9): 2957-2966.
|