化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1673-1682.doi: 10.11949/0438-1157.20211666

• 表面与界面工程 • 上一篇    下一篇

浸没状态下的低压电润湿行为研究

常楚鑫1(),徐黎婷1,殷嘉伦1,雒先2,贾洪伟1()   

  1. 1.东华大学环境科学与工程学院,上海 201620
    2.中核工程咨询有限公司,北京 100073
  • 收稿日期:2021-11-19 修回日期:2021-12-25 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 贾洪伟 E-mail:4452479@163.com;jiahw@dhu.edu.cn
  • 作者简介:常楚鑫(1998—),男,硕士研究生,4452479@163.com
  • 基金资助:
    国家自然科学基金项目(52006030);上海市青年科技英才“扬帆计划”项目(18YF1400700);中国博士后基金项目(2018M641891);上海市科委科技攻关计划项目(19DZ1205005)

Study on low voltage electrowetting behavior under immersion state

Chuxin CHANG1(),Liting XU1,Jialun YIN1,Xian LUO2,Hongwei JIA1()   

  1. 1.College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2.China Nuclear Engineering Consulting Co. , Ltd. , Beijing 100073, China
  • Received:2021-11-19 Revised:2021-12-25 Published:2022-04-05 Online:2022-04-25
  • Contact: Hongwei JIA E-mail:4452479@163.com;jiahw@dhu.edu.cn

摘要:

对表面活性剂溶液中的浸没气泡/油滴在低压电场作用下的电润湿行为进行了实验研究。分析了活性剂对低压电润湿特性的影响,探讨了电场作用下浸没气泡/油滴形态的演变规律。实验结果表明,通过添加十二烷基三甲基溴化铵(DTAB)或十二烷基硫酸钠(SDS)活性剂,浸没气泡可在低压电场(0 ~ -6 V)作用下实现接触角减小与气泡滑移,并且增加活性剂浓度可以降低气泡滑移所需的电压。在0.05~0.10 临界胶束浓度(CMC)范围内,DTAB溶液中的浸没油滴呈现较好的电润湿特性,银表面在-3 V电压时即可实现水下超疏油特性(接触角θ<30°)。在电润湿过程中,气泡/油滴的接触角和接触直径随时间逐渐减小,并呈现“慢-快-慢”变化形式。此外,浸没油滴形态也受到离子活性剂在界面吸附带电引起的静电力的影响。

关键词: 电润湿, 表面活性剂, 接触角, 浸没气泡

Abstract:

The electrowetting behavior of captive bubble/oil-droplet in the surfactant solution in a low-voltage electric field is investigated experimentally. The effect of the surfactant on the electrowetting characteristics was analyzed, and the evolution of immersed bubble/oil-droplet under electric field was explored. The experimental results show that by adding N,N,N-trimethyl-1-dodecanaminium bromide(DTAB) or sodium dodecyl sulfate(SDS), contact angle reduction and bubble slip can occur in low-voltage (0 — -6 V). In addition, the increase of the surfactant concentration could reduce the voltage required for bubble slip. In a concentration of 0.05 CMC to 0.10 CMC, the captive oil-droplet in the DTAB solution presents good electrowetting performance, and the silver surface could achieve underwater superoleophobic property with θ < 30° at -3 V. Moreover, in the process of electrowetting, the contact angle and contact diameter of the bubbles/oil-droplets both gradually decrease in form of “slow-fast-slow”. The shape of the captive oil-droplet is found to be affected by the electrostatic force caused by the adsorption and charging of the ionic surfactant at the interface.

Key words: electrowetting, surfactants, contact angle, captive bubble

中图分类号: 

  • O 647

表1

本研究中使用的表面活性剂"

活性剂

种类

离子类型胶束浓度/(mmol/L)分子量分子式
SDS阴离子8.2288.38C12H25SO4Na
DTAB阳离子14.5308.34C15H34BrN

图1

基于掳泡法的电润湿实验测量系统"

图2

不同电压下浸没气泡/油滴的接触角变化量"

图3

不同浓度活性剂溶液中的电润湿曲线"

表2

不同浓度活性剂溶液中气泡(或油滴)在滑移(或饱和)的表面电压及接触角变化值"

组合浓度/ CMCUsaUsl / V?θ/(°)
DTAB 溶液/油滴0.05-4.0-55.40
0.10-3.0-43.62
0.20-4.0-39.43
DTAB溶液/气泡0.01-6.0-30.60
0.05-2.5-29.92
0.10-2.5-27.18
0.20-1.5-22.15
SDS 溶液/油滴0.10-7.0-26.68
0.20-7.0-24.05
0.30-5.0-21.51
SDS溶液/气泡0.05> -6.0
0.10-4.5-25.17
0.20-3.0-15.74
0.30-2.5-7.61

图4

电润湿过程中气泡和油滴的形态 (体积约为4 μl)"

图5

接触角θ和接触直径d随时间的变化"

图6

浸没油滴受力情况及电润湿前后的图像"

1 叶学民, 戴宇晴, 李春曦. 电场对液滴界面张力及动力学特征影响的研究进展[J]. 化工进展, 2016, 35(9): 2647-2655.
Ye X M, Dai Y Q, Li C X. Review on the effect of electric field on interfacial tension and dynamics of liquid droplets[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2647-2655.
2 张国堤, 李富祥, 陈剑虹, 等. Wood液态合金在NaOH溶液中的电化学反应及表面张力变化行为[J]. 化工学报, 2017, 68(3): 1122-1128.
Zhang G D, Li F X, Chen J H, et al. Electrochemical reaction and surface tension change of Wood liquid alloy in NaOH solution[J]. CIESC Journal, 2017, 68(3): 1122-1128.
3 Mugele F, Baret J C. Electrowetting: from basics to applications[J]. Journal of Physics: Condensed Matter, 2005, 17(28): R705-R774.
4 Zhao Y J, Cho S K. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles[J]. Lab Chip, 2007, 7(2): 273-280.
5 陈庆国, 梁雯, 宋春辉. 电场强度对原油乳化液破乳脱水的影响[J]. 高电压技术, 2014, 40(1): 173-180.
Chen Q G, Liang W, Song C H. Effect of electric field strength on crude oil emulsion's demulsification and dehydration[J]. High Voltage Engineering, 2014, 40(1): 173-180.
6 张军, 何宏舟. 高压静电破乳中离散液滴的动力学分析[J]. 化工学报, 2013, 64(6): 2050-2057.
Zhang J, He H Z. Dynamics of dispersed droplets in demulsification under high electrical voltage[J]. CIESC Journal, 2013, 64(6): 2050-2057.
7 Bande R M, Prasad B, Mishra I M, et al. Oil field effluent water treatment for safe disposal by electroflotation[J]. Chemical Engineering Journal, 2008, 137(3): 503-509.
8 Chen P, Xu J L, Meng G Y, et al. Influence of oil droplet behavior in electrochemical micromembrane cells on treating oil/water emulsions with low-salt concentrations[J]. Science of the Total Environment, 2021, 781: 146633.
9 Lokanathan M, Sharma H, Shabaka M, et al. Comparing electrowettability and surfactants as tools for wettability enhancement on a hydrophobic surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124155.
10 Kedzierski J, Berry S. Engineering the electrocapillary behavior of electrolyte droplets on thin fluoropolymer films[J]. Langmuir, 2006, 22(13): 5690-5696.
11 Berry S, Kedzierski J, Abedian B. Low voltage electrowetting using thin fluoroploymer films[J]. Journal of Colloid and Interface Science, 2006, 303(2): 517-524.
12 Kang K H, Kang I S, Lee C M. Wetting tension due to coulombic interaction in charge-related wetting phenomena[J]. Langmuir, 2003, 19(13): 5407-5412.
13 刘浪宇, 朱春英, 马友光, 等. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
Liu L Y, Zhu C Y, Ma Y G, et al. Progress on surfactant and interfacial transport phenomena in microchannels[J]. CIESC Journal, 2021, 72(2): 783-798.
14 He S Q, Meng Y G, Tian Y. Correlation between adsorption/desorption of surfactant and change in friction of stainless steel in aqueous solutions under different electrode potentials[J]. Tribology Letters, 2011, 41(3): 485-494.
15 Cho H J, Mizerak J P, Wang E N. Turning bubbles on and off during boiling using charged surfactants[J]. Nature Communications, 2015, 6: 8599.
16 Morton S A, Keffer D J, Counce R M, et al. Behavior of oil droplets on an electrified solid metal surface immersed in ionic surfactant solutions[J]. Langmuir, 2005, 21(5): 1758-1765.
17 Sun Z Q, Zhuang L, Wei M Y, et al. Bubble manipulation driven by alternating current electrowetting: oscillation modes and surface detachment[J]. Langmuir, 2021, 37(23): 6898-6904.
18 Francisca F M, Fratta D, Wang H F. Electrowetting on mineral and rock surfaces[J]. Geophysical Research Letters, 2008, 35(6): L06402.
19 Gu J P, Wu Y X, Tang G L, et al. Experimental study of heat transfer and bubble behaviors of NaCl solutions during nucleate flow boiling[J]. Experimental Thermal and Fluid Science, 2019, 109: 109907.
20 Chung S K, Kwon J O, Cho S K. Manipulation of micro/mini-objects by AC-electrowetting-actuated oscillating bubbles: capturing, carrying and releasing[J]. Journal of Adhesion Science and Technology, 2012, 26(12/13/14/15/16/17): 1965-1983.
21 魏进家, 黄崇海, 宇波. 表面活性剂溶液与壁面纵向微沟槽协同减阻研究[J]. 化工学报, 2018, 69(1): 472-482.
Wei J J, Huang C H, Yu B. Study of collaborative drag-reducing effect of surfactant solution and longitudinal microgroove channel[J]. CIESC Journal, 2018, 69(1): 472-482.
22 Hong S J, Chang F M, Chou T H, et al. Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning[J]. Langmuir, 2011, 27(11): 6890-6896.
23 Dorrer C, Rühe J. Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates[J]. Langmuir, 2012, 28(42): 14968-14973.
24 Moraila C L, Montes Ruiz-Cabello F J, Cabrerizo-Vílchez M, et al. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy[J]. Journal of Colloid and Interface Science, 2019, 539: 448–456.
25 Millefiorini S, Tkaczyk A H, Sedev R, et al. Electrowetting of ionic liquids[J]. Journal of the American Chemical Society, 2006, 128(9): 3098-3101.
26 Yong J L, Chen F, Fang Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39863-39871.
27 Hong J, Kim Y K, Kang K H, et al. Effects of drop size and viscosity on spreading dynamics in DC electrowetting[J]. Langmuir, 2013, 29(29): 9118-9125.
28 Vo Q, Tran T. Contact line friction of electrowetting actuated viscous droplets[J]. Physical Review E, 2018, 97(6-1): 063101.
29 Morooka T, Sagara T. Electrowetting of hydrofluoroether liquid droplet at a gold electrode/water interface: significance of lower adhesion energy and static friction energy[J]. Langmuir, 2020, 36(33): 9685-9692.
30 李伟, 李梅, 路庆华. 离子液体在超疏水银膜表面的电润湿性能[J]. 上海交通大学学报, 2011, 45(12): 1879-1884.
Li W, Li M, Lu Q H. Electrowetting of ionic liquids on superhydrophobic silver surfaces[J]. Journal of Shanghai Jiao Tong University, 2011, 45(12): 1879-1884.
31 Liu Y, Liang Y E, Sheng Y J, et al. Ultralow voltage irreversible electrowetting dynamics of an aqueous drop on a stainless steel surface[J]. Langmuir, 2015, 31(13): 3840-3846.
32 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012: 273-274.
Zhao Y P, Physical Mechanics of Surfaces and Interfaces[M]. Beijing: Science Press, 2012: 273-274.
33 Zhao Y P, Wang Y. Fundamentals and applications of electrowetting[J]. Reviews of Adhesion and Adhesives, 2013, 1(1):114-174.
34 Kornyshev A A, Kucernak A R, Marinescu M, et al. Ultra-low-voltage electrowetting[J]. The Journal of Physical Chemistry C, 2010, 114(35):14885-14890.
35 Zhu X, Dudchenko A V, Khor C M, et al. Field-induced redistribution of surfactants at the oil/water interface reduces membrane fouling on electrically conducting carbon nanotube UF membranes[J]. Environmental Science & Technology, 2018, 52(20): 11591-11600.
[1] 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185.
[2] 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659.
[3] 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014.
[4] 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
[5] 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985.
[6] 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101.
[7] 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193.
[8] 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165.
[9] 刘成治, 李春曦, 周静宜, 叶学民. 溶质Marangoni效应对降膜流动稳定性的影响[J]. 化工学报, 2022, 73(12): 5405-5413.
[10] 侯晓松, 刘晨星, 任爱玲, 郭斌, 郭渊明. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气[J]. 化工学报, 2022, 73(10): 4692-4706.
[11] 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691.
[12] 贾海林, 陈南, 焦振营, 程龙, 赵万里, 潘荣锟. 碳氢/有机硅/低碳醇三元系泡沫及抑制煤自燃的效果分析[J]. 化工学报, 2022, 73(1): 470-479.
[13] 周通, 陈晶晶, 涂春朝, 吉晓燕, 陆小华, 王昌松. 管道内多巴胺超疏水涂层的制备[J]. 化工学报, 2021, 72(7): 3814-3822.
[14] 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848.
[15] 刘浪宇, 朱春英, 马友光, 付涛涛. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!