化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 471-478.DOI: 10.11949/0438-1157.20191333
收稿日期:
2019-11-05
修回日期:
2019-12-12
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
吴延鹏
作者简介:
吴延鹏(1972—),男,博士,副教授,基金资助:
Yanpeng WU1(),Wei ZHAO1,Fengjun CHEN2
Received:
2019-11-05
Revised:
2019-12-12
Online:
2020-04-25
Published:
2020-04-25
Contact:
Yanpeng WU
摘要:
利用静电纺丝法制备了表面静态接触角为23.6°的具有亲水功能的PAN/PVP复合纳米纤维膜、接触角为81.2°的PAN纳米纤维膜、接触角为131.9°的具有疏水功能的PAN/PVDF复合纳米纤维膜。利用自行搭建的空气过滤实验台,在40%、55%、70%三种相对湿度下对三种纳米纤维膜进行空气过滤实验,对纳米纤维膜的过滤效率、阻力损失及品质因子进行分析。结果表明:三种纳米纤维膜的过滤效率随着相对湿度的增大而升高,PAN/PVP膜和PAN膜的阻力损失随着相对湿度的增大而增加,PAN/PVDF的阻力损失随着相对湿度的增大而减小;PAN/PVP膜和PAN膜的品质因子随着相对湿度的增大而减小,PAN/PVDF膜的品质因子随着相对湿度的增大而增大,湿度越大,PAN/PVDF纳米纤维膜的过滤性能越显著。
中图分类号:
吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
Yanpeng WU, Wei ZHAO, Fengjun CHEN. Experimental study on air filtration performance of nanofiber membrane with hydrophilic and hydrophobic function at different relative humidity[J]. CIESC Journal, 2020, 71(S1): 471-478.
图2 纤维膜空气过滤性能实验装置
Fig.2 Schematic diagram of testing device for air filtration performance of fiber membrane1—atmospheric dust; 2—uncontaminated air; 3—acrylic plate straight pipe section; 4—humidifier; 5—particle counter; 6—tilt-type micro manometer; 7—vacuum pump; 8—flange connections; 9—filter membrane; 10—thermometer; 11—hygrometric tables; 12—hot wire anemometer
图6 PAN/PVP、PAN、PAN/PVDF纳米纤维膜在40%相对湿度时的平均过滤效率
Fig.6 Average filtration efficiency of PAN/ PVP, PAN, PAN/ PVDF nanofiber membrane at 40% relative humidity
Particle diameter/μm | PAN/PVP | PAN | PAN/PVDF |
---|---|---|---|
0.3 | 0.01994 | 0.01965 | 0.01956 |
0.5 | 0.02114 | 0.0211 | 0.02025 |
1 | 0.02611 | 0.02583 | 0.02578 |
3 | +∞ | +∞ | +∞ |
5 | +∞ | +∞ | +∞ |
10 | +∞ | +∞ | +∞ |
表1 PAN/PVP、PAN、PAN/PVDF纳米纤维膜的QF/Pa-1
Table 1 QF of PAN/PVP,PAN,PAN/PVDF nanofiber membrane/Pa-1
Particle diameter/μm | PAN/PVP | PAN | PAN/PVDF |
---|---|---|---|
0.3 | 0.01994 | 0.01965 | 0.01956 |
0.5 | 0.02114 | 0.0211 | 0.02025 |
1 | 0.02611 | 0.02583 | 0.02578 |
3 | +∞ | +∞ | +∞ |
5 | +∞ | +∞ | +∞ |
10 | +∞ | +∞ | +∞ |
图7 PAN/PVP、PAN、PAN/PVDF纳米纤维膜在55%相对湿度时的平均过滤效率
Fig.7 Average filtration efficiency of PAN/ PVP, PAN, PAN/ PVDF nanofiber membrane at 55% relative humidity
Particle diameter/μm | PAN/PVP | PAN | PAN/PVDF |
---|---|---|---|
0.3 | 0.01872 | 0.01963 | 0.02273 |
0.5 | 0.01984 | 0.02042 | 0.02531 |
1 | 0.02461 | 0.02498 | 0.03078 |
3 | +∞ | +∞ | +∞ |
5 | +∞ | +∞ | +∞ |
10 | +∞ | +∞ | +∞ |
表2 PAN/PVP、PAN、PAN/PVDF纳米纤维膜的QF/Pa-1
Table 2 QF of PAN/PVP,PAN,PAN/PVDF nanofiber membrane/Pa-1
Particle diameter/μm | PAN/PVP | PAN | PAN/PVDF |
---|---|---|---|
0.3 | 0.01872 | 0.01963 | 0.02273 |
0.5 | 0.01984 | 0.02042 | 0.02531 |
1 | 0.02461 | 0.02498 | 0.03078 |
3 | +∞ | +∞ | +∞ |
5 | +∞ | +∞ | +∞ |
10 | +∞ | +∞ | +∞ |
Particle diameter/μm | PAN/PVP | PAN | PAN/PVDF |
---|---|---|---|
0.3 | 0.01802 | 0.01851 | 0.02778 |
0.5 | 0.01961 | 0.02029 | 0.03113 |
1 | +∞ | +∞ | +∞ |
3 | +∞ | +∞ | +∞ |
5 | +∞ | +∞ | +∞ |
10 | +∞ | +∞ | +∞ |
表3 PAN/PVP、PAN、PAN/PVDF纳米纤维膜的QF/Pa-1
Table 3 QF of PAN/PVP,PAN,PAN/PVDF nanofiber membrane/Pa-1
Particle diameter/μm | PAN/PVP | PAN | PAN/PVDF |
---|---|---|---|
0.3 | 0.01802 | 0.01851 | 0.02778 |
0.5 | 0.01961 | 0.02029 | 0.03113 |
1 | +∞ | +∞ | +∞ |
3 | +∞ | +∞ | +∞ |
5 | +∞ | +∞ | +∞ |
10 | +∞ | +∞ | +∞ |
1 | Xie Y Y, Zhao B, Zhang L, et al. Spatiotemporal variations of PM2.5 and PM10 concentration between 31 Chinese cities and their relationships with SO2, NO2, CO and O3 [J]. Particuology, 2015, 20(3): 141-149. |
2 | Amoatey P, Omidvarborna H, Baawain M S, et al. Air pollution and exposure assessment of the gulf cooperation council countries: a critical review[J]. Environment International, 2018, 121(1): 491-506. |
3 | Lin N, Mu X L, Wang G L, et al. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers[J]. Environmental Pollution, 2017, 227: 1-7. |
4 | Li Q, Xu Y, Wei H, et al. An electro spun polycarbonate nanofibrous membrane for high efficiency particulate matter filtration [J]. RSC Advances, 2016, 69(6): 65275-65281. |
5 | Yoon K, Hsiao B S, Chu B. Functional nanofibers for environmental applications [J]. Journal of Materials Chemistry, 2008, 18(44): 5326-5334. |
6 | Miller K A, Siscovick D S, Sheppard L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women[J]. New England Journal of Medicine, 2007, 265(5): 447-458. |
7 | Homaeigohar S, Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation [J]. Materials, 2014, 7(2): 1017-1045. |
8 | Helble J J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators [J]. Processing Technology, 2000, 63(2): 125-147. |
9 | Zhang H, Zhen Q, Liu Y, et al. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks[J]. Results in Physics, 2019, 12: 1421-1428. |
10 | Wang Q N, Bai Y Y, Xie J F, et al. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles[J]. Powder Technology, 2016, 292: 54-63. |
11 | Agyemang F O, Li F, Francis W Y, et al. Effect of poly (ethylene oxide) and water on electrospun poly (vinylidene fluoride) nanofibers with enhanced mechanical properties as pre-filter for oil-in-water filtration[J]. Materials Chemistry and Physics, 2016, 182: 208-218. |
12 | Solomin E V, Sirotkin E A, Sirotkin A A. Universal electrospinning scalable plant for filtering nanofiber production[J]. Procedia Engineering, 2017, 206: 1371-1375. |
13 | Gao X, Li Z K, Xue J, et al. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification[J]. Journal of Membrane Science, 2019, 586: 162-169. |
14 | Cao M Y, Gu F, Rao C C, et al. Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5[J]. Science of the Total Environment, 2019, 666: 1011-1021. |
15 | Wu Y P, Lu Y M, Cao G Q. Preparation of a polyacrylonitrile/polyurethane nanofibrous membrane with antibacterial function and measurement of its air filtration performance[J]. Indoor and Building Environment, 2019, 28(8): 1038-1048. |
16 | 张明明. 静电纺制备PM2.5空气过滤材料及其性能研究[D]. 西安: 陕西科技大学, 2018. |
Zhang M M. Preparation and property of electrospun nanofibrous membrane for air filtration [D]. Xi an: Shaanxi University of Science & Technology, 2018. | |
17 | Selvam A K, Nallathambi G. Polyacrylonitrile/silver nanoparticle electrospunnanocomposite matrix for bacterial filtration [J]. Fibers and Polymers, 2015, 16(6): 1327-1335. |
18 | Lu P, Ding B. Applications of electrospun fibers [J]. Recent Patents on Nanotechnology, 2008, 2(3): 169-182. |
19 | 宁静. 同轴静电纺丝法制备PVDF纳米纤维膜及其碳化[D]. 上海: 华东理工大学, 2016. |
Ning J. Preparation of PVDF nanofiber membrane by coaxial electrostatic spinning method and its carbonization [D]. Shanghai: East China University of Science, 2016. | |
20 | 空气过滤器: GB/T 14295—2008[S]. |
Air filter: GB/T 14295—2008[S]. | |
21 | 通风系统用空气净化装置: GB/T 34012—2017[S]. |
Air purification device for ventilation system: GB/T 34012—2017[S]. | |
22 | Wang L, Kang Y, Xing C Y, et al. β-Cyclodextrin based air filter for high-efficiency filtration of pollution sources[J]. Journal of Hazardous Materials, 2019, 373: 197-203. |
23 | 苗利婷. 高效空气过滤器性能及其测试系统研究[D]. 沈阳: 东北大学, 2009. |
Miao L T. Research on performances of HEPA filters and the test system [D]. Shenyang: Northeastern University, 2009. | |
24 | Kim H J, Park S J, Park C S, et al. Surface-modified polymer nanofiber membrane for high-efficiency micro dust capturing[J]. Chemical Engineering Journal, 2018, 339: 204-213. |
25 | High efficiency air filters (HEPA and ULPA): EN1822-5—1998[S]. |
26 | Fattahi N, Nazarpoor H. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent [J]. Express Polymer Letters, 2010, 4(6): 329-338. |
27 | 赵文敏. 静电纺PVDF及其改性纳米纤维膜对含油污水的过滤性能研究[D]. 上海: 东华大学, 2015. |
Zhao W M. Study on the filtration of electro spun PVDF nanofiber and its modified membrane to oily waste water [D]. Shanghai: Donghua University, 2015. | |
28 | High efficiency air filters (EPA, HEPA and ULPA). Part 1: Classification, performance testing, marking: EN1822-1—2009[S]. |
29 | European Committee for Standardization. Particular air filters for general ventilation-determination of the filtration performances: EN 779—2012[S]. Brussels: European Committee for Standardization, 2012. |
30 | 王婧.聚乙烯吡咯烷酮(PVP)-碘(I2)复合纳米纤维材料的制备与表征[D]. 长春: 东北师范大学, 2010. |
Wang J. Preparation and characterization of PVP-I2 nanofibers by electrospinning technique[D]. Changchun: Northeast Normal University, 2010. |
[1] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[2] | 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221. |
[3] | 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
[4] | 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682. |
[5] | 周通, 陈晶晶, 涂春朝, 吉晓燕, 陆小华, 王昌松. 管道内多巴胺超疏水涂层的制备[J]. 化工学报, 2021, 72(7): 3814-3822. |
[6] | 沈逸, 张泽宇, 梁益涛, 黄永华, 耑锐, 张亮, 卜劭华. 磁补偿微重力环境实现及磁流体微重力内角流动研究[J]. 化工学报, 2020, 71(8): 3490-3499. |
[7] | 祝及龙, 石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象[J]. 化工学报, 2018, 69(S1): 53-57. |
[8] | 高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984. |
[9] | 张锐, 李敏, 周天旭, 彭宏伟, 郭旭虹. 新型温敏超滤膜处理印染废水的研究[J]. 化工学报, 2018, 69(11): 4910-4917. |
[10] | 唐海达, 张涛, 刘晓华, 江亿. 辐射吊顶表面冷凝液滴脱落尺寸分析[J]. 化工学报, 2016, 67(9): 3552-3558. |
[11] | 庄大伟, 杨艺菲, 胡海涛, 丁国良. 竖直平板间液桥形状的观测与预测模型开发[J]. 化工学报, 2016, 67(6): 2224-2229. |
[12] | 姜桂林, 管宁, 张承武, 刘志刚. 不同截面疏水性微肋阵内减阻特性[J]. 化工学报, 2016, 67(4): 1258-1268. |
[13] | 于明志, 范雪晶, 胡爱娟. 颗粒堆积型多孔介质内部液体形态实验研究及机理分析[J]. 化工学报, 2015, 66(7): 2450-2455. |
[14] | 姜桂林, 张承武, 管宁, 邱德来, 刘志刚. 水在不同接触角微柱群内的流动特征[J]. 化工学报, 2015, 66(5): 1704-1709. |
[15] | 吴锫, 罗学刚, 李科, 张思钊. Fe-Sr2Bi2O5光催化降解低密度聚乙烯膜[J]. 化工学报, 2015, 66(5): 1939-1946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||