化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3095-3104.DOI: 10.11949/0438-1157.20210028
收稿日期:
2021-01-08
修回日期:
2021-03-25
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
李殿卿,唐平贵
作者简介:
杜冬冬(1996—),男,硕士研究生,基金资助:
DU Dongdong(),LIU Huang,MA Ruoyu,FENG Yongjun,LI Dianqing(),TANG Pinggui()
Received:
2021-01-08
Revised:
2021-03-25
Online:
2021-06-05
Published:
2021-06-05
Contact:
LI Dianqing,TANG Pinggui
摘要:
采用共沉淀-离子交换法制备了十二烷基硫酸根(SDS)插层镁铝水滑石(SDS-LDH),然后借助水滑石层间客体分子间作用力将光稳定剂2-羟基-4-正辛氧基二苯甲酮(UV-531)中性分子引入镁铝水滑石层间,构筑了共插层结构镁铝水滑石光稳定剂UV-SDS-LDH。采用XRD、FT-IR、UV-Vis和SEM等表征手段对其晶相结构、组成、紫外吸收性能和形貌进行表征。研究发现,UV-SDS-LDH形成了共插层结构,具有强的紫外吸收能力;插层组装大幅度提高了UV-531的耐迁移性,使其迁移率由83%降低至50.5%。由于其特殊的结构和组成,UV-SDS-LDH明显增强了聚丙烯(PP)的热稳定性和耐光老化性能,使PP 50%失重温度由411℃提高到441℃,光老化指数由65.9×10-3减小至23.9×10-3,在PP领域具有潜在的应用价值。该研究为新型水滑石基功能材料的构筑和盐湖镁资源的利用提供了新思路。
中图分类号:
杜冬冬, 刘欢, 马若愚, 冯拥军, 李殿卿, 唐平贵. 基于分子间作用力组装的镁铝水滑石光稳定剂及其性能研究[J]. 化工学报, 2021, 72(6): 3095-3104.
DU Dongdong, LIU Huang, MA Ruoyu, FENG Yongjun, LI Dianqing, TANG Pinggui. Performance of MgAl layered double hydroxides light stabilizer assembled via intermolecular forces[J]. CIESC Journal, 2021, 72(6): 3095-3104.
图4 PP、SDS-LDH/PP和UV-SDS-LDH/PP的UV-Vis吸收曲线、透过率曲线以及UV-SDS-LDH/PP的SEM图与元素分布图
Fig.4 The UV-Vis absorption curves and transmission curves of PP, SDS-LDH/PP, and UV-SDS-LDH/PP, and the SEM images with elemental mapping of UV-SDS-LDH/PP
图5 UV-531吸光度与浓度标准曲线及UV/PP和UV-SDS-LDH/PP薄膜中UV-531的迁移曲线
Fig.5 The standard curve of absorbance and the UV-531 concentration and the migration curves of UV-531 in the UV/PP and UV-SDS-LDH/PP films
图7 PP、SDS-LDH/PP、UV/PP和UV-SDS-LDH不同光老化时间的红外谱图、羰基指数和光老化指数
Fig.7 FT-IR spectra, carbonyl index and photoaging index of PP, UV/PP, SDS-LDH/PP and UV-SDS-LDH before and after light aging with different time
1 | 周园, 李丽娟, 吴志坚, 等. 青海盐湖资源开发及综合利用[J]. 化学进展, 2013, 25(10): 1613-1624. |
Zhou Y, Li L J, Wu Z J, et al. Exploitation and comprehensive utilization for Qinghai salt lakes[J]. Progress in Chemistry, 2013, 25(10): 1613-1624. | |
2 | 郭敏, 李权, 刘海宁, 等. 盐湖镁资源的开发和利用[J]. 化学进展, 2009, 21(11): 2358-2364. |
Guo M, Li Q, Liu H N, et al. The exploitation and utilization of magnesium resources in salt lakes[J]. Progress in Chemistry, 2009, 21(11): 2358-2364. | |
3 | 闫东鹏, 陆军, 段雪. 层状复合金属氢氧化物: 主客体结构研究进展[J]. 中国科学: 化学, 2013, 43(9): 1135-1148. |
Yan D P, Lu J, Duan X. Recent advance in structure and interaction study on layered double hydroxide[J]. Scientia Sinica (Chimica), 2013, 43(9): 1135-1148. | |
4 | Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155. |
5 | 卫彩云, 谭静静, 夏晓丽, 等. 焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报, 2019, 70(4): 1409-1419. |
Wei C Y, Tan J J, Xia X L, et al. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol[J]. CIESC Journal, 2019, 70(4): 1409-1419. | |
6 | 来天艺, 王纪康, 李天, 等. 光电解水产活性氢/氧耦合加氢/氧化过程用水滑石基纳米材料[J]. 化工学报, 2020, 71(10): 4327-4349. |
Lai T Y, Wang J K, Li T, et al. Photoelectrochemical water splitting into active hydrogen/oxygen species coupling with hydrogenation/oxidation process using layered double hydroxides-based nanocatalysts[J]. CIESC Journal, 2020, 71(10): 4327-4349. | |
7 | He D, Gao R T, Liu S J, et al. Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting[J]. ACS Catalysis, 2020, 10(18): 10570-10576. |
8 | Wu C C, Li H Q, Xia Z X, et al. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction[J]. ACS Catalysis, 2020, 10(19): 11127-11135. |
9 | Zhao Y X, Zheng L R, Shi R, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3[J]. Advanced Energy Materials, 2020, 10(34): 2002199. |
10 | Zhang J T, Yu L, Chen Y, et al. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Advanced Materials, 2020, 32(16): 1906432. |
11 | Lee S, Bai L C, Hu X L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide[J]. Angewandte Chemie International Edition, 2020, 59(21): 8072-8077. |
12 | Li Z H, Liu J J, Zhao Y F, et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins[J]. Advanced Materials, 2018, 30(31): 1800527. |
13 | Zhang X, Zhao Y F, Zhao Y X, et al. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation[J]. Advanced Energy Materials, 2019, 9(24): 1900881. |
14 | Shi S, Zhang W T, Wu H F, et al. In situ cascade derivation toward a hierarchical layered double hydroxide magnetic absorbent for high-performance protein separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4966-4974. |
15 | Mallakpour S, Hatami M, Hussain C M. Recent innovations in functionalized layered double hydroxides: fabrication, characterization, and industrial applications[J]. Advances in Colloid and Interface Science, 2020, 283: 102216. |
16 | Jiang Z W, Yan L H, Wu J N, et al. Low-temperature synthesis of carbonate-intercalated NixFe-layered double hydroxides for enhanced adsorption properties[J]. Applied Surface Science, 2020, 531: 147281. |
17 | Lyu H X, Hu K, Fan J S, et al. 3D hierarchical layered double hydroxide/carbon spheres composite with hollow structure for high adsorption of dye[J]. Applied Surface Science, 2020, 500: 144037. |
18 | Kameda T, Uchida H, Kumagai S, et al. Influence of CO2 gas on the rate and kinetics of HCl, SO2, and NO2 gas removal by Mg-Al layered double hydroxide intercalated with CO32-[J]. Applied Clay Science, 2020, 195: 105725. |
19 | Chen M Q, Wu P X, Zhu N W, et al. Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: performance and metals synergy[J]. Chemical Engineering Journal, 2020, 392: 123709. |
20 | Hong Q Y, Xu H M, Yuan Y, et al. Gaseous mercury capture using supported CuSx on layered double hydroxides from SO2- rich flue gas[J]. Chemical Engineering Journal, 2020, 400: 125963. |
21 | Kang J, Levitskaia T G, Park S, et al. Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions[J]. Chemical Engineering Journal, 2020, 380: 122408. |
22 | Belgheisi G, Nazarpak M H, Hashjin M S. Bone tissue engineering electrospun scaffolds based on layered double hydroxides with the ability to release vitamin D3: fabrication, characterization and in vitro study[J]. Applied Clay Science, 2020, 185: 105434. |
23 | Wang Z J, Xu Z P, Jing G X, et al. Layered double hydroxide eliminate embryotoxicity of chemotherapeutic drug through BMP-SMAD signaling pathway[J]. Biomaterials, 2020, 230: 119602. |
24 | Xu Y, Kong Y, Xu J, et al. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma[J]. Biomaterials Science, 2020, 8(3): 897-911. |
25 | Zhang L X, Xie X X, Liu D Q, et al. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy[J]. Biomaterials, 2018, 174: 54-66. |
26 | Zhang W D, Zhao Y P, Wang W H, et al. Colloidal surface engineering: growth of layered double hydroxides with intrinsic oxidase-mimicking activities to fight against bacterial infection in wound healing[J]. Advanced Healthcare Materials, 2020, 9(17): 2000092. |
27 | Nava A K, Knauth P, López Z, et al. Assembly of folate-carbon dots in GdDy-doped layered double hydroxides for targeted delivery of doxorubicin[J]. Applied Clay Science, 2020, 192: 105661. |
28 | Fan L P, Yang L, Lin Y J, et al. Enhanced thermal stabilization effect of hybrid nanocomposite of Ni-Al layered double hydroxide/carbon nanotubes on polyvinyl chloride resin[J]. Polymer Degradation and Stability, 2020, 176: 109153. |
29 | Lee J H, Zhang W, Ryu H J, et al. Enhanced thermal stability and mechanical property of EVA nanocomposites upon addition of organo-intercalated LDH nanoparticles[J]. Polymer, 2019, 177: 274-281. |
30 | Wang W J, Wang J L, Wang X G, et al. Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in situ growing layered double hydroxides (LDHs) on polydopamine[J]. Progress in Organic Coatings, 2020, 149: 105930. |
31 | Jin L, Zeng H Y, Du J Z, et al. Intercalation of organic and inorganic anions into layered double hydroxides for polymer flame retardancy[J]. Applied Clay Science, 2020, 187: 105481. |
32 | Li Z, Liu Z Q, Zhang J, et al. Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression[J]. Chemical Engineering Journal, 2019, 378: 122046. |
33 | Xu Z S, Deng N, Yan L. Flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings reinforced with layered double hydroxides[J]. Journal of Coatings Technology and Research, 2020, 17(1): 157-169. |
34 | Ma R Y, Tang P G, Feng Y J, et al. UV absorber co-intercalated layered double hydroxides as efficient hybrid UV-shielding materials for polypropylene[J]. Dalton Transactions, 2019, 48(8): 2750-2759. |
35 | Ma R Y, Chen T W, Feng Y J, et al. Synergetic light stabilizing effects of reducing agent and UV absorber co-intercalated layered double hydroxides for polypropylene[J]. Applied Clay Science, 2020, 194: 105700. |
36 | Li Z X, Zeng H Y, Gohi B F C A, et al. Preparation of CeO2-decorated organic-pillared hydrotalcites for the UV resistance of polymer[J]. Applied Surface Science, 2020, 507: 145110. |
37 | Joseph P V, Rabello M S, Mattoso L H C, et al. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites[J]. Composites Science and Technology, 2002, 62(10/11): 1357-1372. |
38 | Mailhot B, Morlat S, Gardette J L, et al. Photodegradation of polypropylene nanocomposites[J]. Polymer Degradation and Stability, 2003, 82(2): 163-167. |
39 | Búcsiová L, Chmela Š, Hrdlovič P. Preparation, photochemical stability and photostabilising efficiency of adducts of pyrene and hindered amine stabilisers in iPP matrix[J]. Polymer Degradation and Stability, 2000, 71(1): 135-145. |
40 | Hu H B, Yuan Y, Shi W F. Preparation of waterborne hyperbranched polyurethane acrylate/LDH nanocomposite[J]. Progress in Organic Coatings, 2012, 75(4): 474-479. |
41 | Omonmhenle S I, Shannon I J. Synthesis and characterisation of surfactant enhanced Mg-Al hydrotalcite-like compounds as potential 2-chlorophenol scavengers[J]. Applied Clay Science, 2016, 127/128: 88-94. |
42 | Feng Y J, Li D Q, Wang Y, et al. Synthesis and characterization of a UV absorbent-intercalated Zn-Al layered double hydroxide[J]. Polymer Degradation and Stability, 2006, 91(4): 789-794. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[7] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[9] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[14] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[15] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 475
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||