1 |
周园, 李丽娟, 吴志坚, 等. 青海盐湖资源开发及综合利用[J]. 化学进展, 2013, 25(10): 1613-1624.
|
|
Zhou Y, Li L J, Wu Z J, et al. Exploitation and comprehensive utilization for Qinghai salt lakes[J]. Progress in Chemistry, 2013, 25(10): 1613-1624.
|
2 |
郭敏, 李权, 刘海宁, 等. 盐湖镁资源的开发和利用[J]. 化学进展, 2009, 21(11): 2358-2364.
|
|
Guo M, Li Q, Liu H N, et al. The exploitation and utilization of magnesium resources in salt lakes[J]. Progress in Chemistry, 2009, 21(11): 2358-2364.
|
3 |
闫东鹏, 陆军, 段雪. 层状复合金属氢氧化物: 主客体结构研究进展[J]. 中国科学: 化学, 2013, 43(9): 1135-1148.
|
|
Yan D P, Lu J, Duan X. Recent advance in structure and interaction study on layered double hydroxide[J]. Scientia Sinica (Chimica), 2013, 43(9): 1135-1148.
|
4 |
Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155.
|
5 |
卫彩云, 谭静静, 夏晓丽, 等. 焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报, 2019, 70(4): 1409-1419.
|
|
Wei C Y, Tan J J, Xia X L, et al. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol[J]. CIESC Journal, 2019, 70(4): 1409-1419.
|
6 |
来天艺, 王纪康, 李天, 等. 光电解水产活性氢/氧耦合加氢/氧化过程用水滑石基纳米材料[J]. 化工学报, 2020, 71(10): 4327-4349.
|
|
Lai T Y, Wang J K, Li T, et al. Photoelectrochemical water splitting into active hydrogen/oxygen species coupling with hydrogenation/oxidation process using layered double hydroxides-based nanocatalysts[J]. CIESC Journal, 2020, 71(10): 4327-4349.
|
7 |
He D, Gao R T, Liu S J, et al. Yttrium-induced regulation of electron density in NiFe layered double hydroxides yields stable solar water splitting[J]. ACS Catalysis, 2020, 10(18): 10570-10576.
|
8 |
Wu C C, Li H Q, Xia Z X, et al. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction[J]. ACS Catalysis, 2020, 10(19): 11127-11135.
|
9 |
Zhao Y X, Zheng L R, Shi R, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3[J]. Advanced Energy Materials, 2020, 10(34): 2002199.
|
10 |
Zhang J T, Yu L, Chen Y, et al. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Advanced Materials, 2020, 32(16): 1906432.
|
11 |
Lee S, Bai L C, Hu X L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide[J]. Angewandte Chemie International Edition, 2020, 59(21): 8072-8077.
|
12 |
Li Z H, Liu J J, Zhao Y F, et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins[J]. Advanced Materials, 2018, 30(31): 1800527.
|
13 |
Zhang X, Zhao Y F, Zhao Y X, et al. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation[J]. Advanced Energy Materials, 2019, 9(24): 1900881.
|
14 |
Shi S, Zhang W T, Wu H F, et al. In situ cascade derivation toward a hierarchical layered double hydroxide magnetic absorbent for high-performance protein separation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4966-4974.
|
15 |
Mallakpour S, Hatami M, Hussain C M. Recent innovations in functionalized layered double hydroxides: fabrication, characterization, and industrial applications[J]. Advances in Colloid and Interface Science, 2020, 283: 102216.
|
16 |
Jiang Z W, Yan L H, Wu J N, et al. Low-temperature synthesis of carbonate-intercalated NixFe-layered double hydroxides for enhanced adsorption properties[J]. Applied Surface Science, 2020, 531: 147281.
|
17 |
Lyu H X, Hu K, Fan J S, et al. 3D hierarchical layered double hydroxide/carbon spheres composite with hollow structure for high adsorption of dye[J]. Applied Surface Science, 2020, 500: 144037.
|
18 |
Kameda T, Uchida H, Kumagai S, et al. Influence of CO2 gas on the rate and kinetics of HCl, SO2, and NO2 gas removal by Mg-Al layered double hydroxide intercalated with CO32-[J]. Applied Clay Science, 2020, 195: 105725.
|
19 |
Chen M Q, Wu P X, Zhu N W, et al. Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: performance and metals synergy[J]. Chemical Engineering Journal, 2020, 392: 123709.
|
20 |
Hong Q Y, Xu H M, Yuan Y, et al. Gaseous mercury capture using supported CuSx on layered double hydroxides from SO2- rich flue gas[J]. Chemical Engineering Journal, 2020, 400: 125963.
|
21 |
Kang J, Levitskaia T G, Park S, et al. Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions[J]. Chemical Engineering Journal, 2020, 380: 122408.
|
22 |
Belgheisi G, Nazarpak M H, Hashjin M S. Bone tissue engineering electrospun scaffolds based on layered double hydroxides with the ability to release vitamin D3: fabrication, characterization and in vitro study[J]. Applied Clay Science, 2020, 185: 105434.
|
23 |
Wang Z J, Xu Z P, Jing G X, et al. Layered double hydroxide eliminate embryotoxicity of chemotherapeutic drug through BMP-SMAD signaling pathway[J]. Biomaterials, 2020, 230: 119602.
|
24 |
Xu Y, Kong Y, Xu J, et al. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma[J]. Biomaterials Science, 2020, 8(3): 897-911.
|
25 |
Zhang L X, Xie X X, Liu D Q, et al. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy[J]. Biomaterials, 2018, 174: 54-66.
|
26 |
Zhang W D, Zhao Y P, Wang W H, et al. Colloidal surface engineering: growth of layered double hydroxides with intrinsic oxidase-mimicking activities to fight against bacterial infection in wound healing[J]. Advanced Healthcare Materials, 2020, 9(17): 2000092.
|
27 |
Nava A K, Knauth P, López Z, et al. Assembly of folate-carbon dots in GdDy-doped layered double hydroxides for targeted delivery of doxorubicin[J]. Applied Clay Science, 2020, 192: 105661.
|
28 |
Fan L P, Yang L, Lin Y J, et al. Enhanced thermal stabilization effect of hybrid nanocomposite of Ni-Al layered double hydroxide/carbon nanotubes on polyvinyl chloride resin[J]. Polymer Degradation and Stability, 2020, 176: 109153.
|
29 |
Lee J H, Zhang W, Ryu H J, et al. Enhanced thermal stability and mechanical property of EVA nanocomposites upon addition of organo-intercalated LDH nanoparticles[J]. Polymer, 2019, 177: 274-281.
|
30 |
Wang W J, Wang J L, Wang X G, et al. Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in situ growing layered double hydroxides (LDHs) on polydopamine[J]. Progress in Organic Coatings, 2020, 149: 105930.
|
31 |
Jin L, Zeng H Y, Du J Z, et al. Intercalation of organic and inorganic anions into layered double hydroxides for polymer flame retardancy[J]. Applied Clay Science, 2020, 187: 105481.
|
32 |
Li Z, Liu Z Q, Zhang J, et al. Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression[J]. Chemical Engineering Journal, 2019, 378: 122046.
|
33 |
Xu Z S, Deng N, Yan L. Flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings reinforced with layered double hydroxides[J]. Journal of Coatings Technology and Research, 2020, 17(1): 157-169.
|
34 |
Ma R Y, Tang P G, Feng Y J, et al. UV absorber co-intercalated layered double hydroxides as efficient hybrid UV-shielding materials for polypropylene[J]. Dalton Transactions, 2019, 48(8): 2750-2759.
|
35 |
Ma R Y, Chen T W, Feng Y J, et al. Synergetic light stabilizing effects of reducing agent and UV absorber co-intercalated layered double hydroxides for polypropylene[J]. Applied Clay Science, 2020, 194: 105700.
|
36 |
Li Z X, Zeng H Y, Gohi B F C A, et al. Preparation of CeO2-decorated organic-pillared hydrotalcites for the UV resistance of polymer[J]. Applied Surface Science, 2020, 507: 145110.
|
37 |
Joseph P V, Rabello M S, Mattoso L H C, et al. Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites[J]. Composites Science and Technology, 2002, 62(10/11): 1357-1372.
|
38 |
Mailhot B, Morlat S, Gardette J L, et al. Photodegradation of polypropylene nanocomposites[J]. Polymer Degradation and Stability, 2003, 82(2): 163-167.
|
39 |
Búcsiová L, Chmela Š, Hrdlovič P. Preparation, photochemical stability and photostabilising efficiency of adducts of pyrene and hindered amine stabilisers in iPP matrix[J]. Polymer Degradation and Stability, 2000, 71(1): 135-145.
|
40 |
Hu H B, Yuan Y, Shi W F. Preparation of waterborne hyperbranched polyurethane acrylate/LDH nanocomposite[J]. Progress in Organic Coatings, 2012, 75(4): 474-479.
|
41 |
Omonmhenle S I, Shannon I J. Synthesis and characterisation of surfactant enhanced Mg-Al hydrotalcite-like compounds as potential 2-chlorophenol scavengers[J]. Applied Clay Science, 2016, 127/128: 88-94.
|
42 |
Feng Y J, Li D Q, Wang Y, et al. Synthesis and characterization of a UV absorbent-intercalated Zn-Al layered double hydroxide[J]. Polymer Degradation and Stability, 2006, 91(4): 789-794.
|