化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3394-3406.DOI: 10.11949/0438-1157.20230358
邢雷1,2,3(), 苗春雨1, 蒋明虎1,3(), 赵立新1,3, 李新亚1,3
收稿日期:
2023-04-10
修回日期:
2023-08-08
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
蒋明虎
作者简介:
邢雷(1990—),男,博士,副教授,Nepuxinglei@163.com
基金资助:
Lei XING1,2,3(), Chunyu MIAO1, Minghu JIANG1,3(), Lixin ZHAO1,3, Xinya LI1,3
Received:
2023-04-10
Revised:
2023-08-08
Online:
2023-08-25
Published:
2023-10-18
Contact:
Minghu JIANG
摘要:
针对采油井筒内产出液含气对油田同井注采开发模式的不利影响,基于旋流分离原理提出一种井下微型气液旋流分离器结构。借助Plackett-Burman设计、最陡爬坡设计与响应曲面设计结合计算流体动力学方法,对井下微型气液旋流分离器结构参数进行显著分析及优化设计,构建了显著性结构参数与分离效率间的二次多项式数学关系。系统分析了入口进液量、分流比及气相体积分数对气液分离性能的影响规律。构建室内微型气液旋流分离性能测试系统,对数值模拟结果的准确性及优化结果的高效性进行了验证性试验。试验结果表明优化后的微型气液旋流分离器结构可使液相效率由优化前的84.10%提高到87.22%。获得了微型气液旋流分离器最佳溢流分流比为6%,最佳入口流量为13.77 L/h,最适用的气相体积分数为5.5%,最佳工况下气液平均分离效率为99.66%。为了指导分离器在不同含气量条件下的最佳运行参数调控,构建了气相体积分数及溢流分流比与分离效率间的数学关系模型,获得了不同气相体积分数条件下的最佳分流比。
中图分类号:
邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406.
Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone[J]. CIESC Journal, 2023, 74(8): 3394-3406.
试验组 | d1/mm | h1/mm | D/mm | h2/mm | S/mm2 | El/% |
---|---|---|---|---|---|---|
1 | 5 | 5 | 15 | 25 | 7 | 88.19 |
2 | 4.5 | 4.5 | 14 | 22.5 | 8 | 88.55 |
3 | 4 | 4 | 13 | 20 | 9 | 88.75 |
4 | 3.5 | 3.5 | 12 | 17.5 | 10 | 88.98 |
5 | 3 | 3 | 11 | 15 | 11 | 89.20 |
6 | 2.5 | 2.5 | 10 | 12.5 | 12 | 89.23 |
7 | 2 | 2 | 9 | 10 | 13 | 89.31 |
8 | 1.5 | 1.5 | 8 | 7.5 | 14 | 89.30 |
9 | 1 | 1 | 7 | 5 | 15 | 88.98 |
表1 最陡爬坡设计及模拟结果
Table 1 Path of steepest ascent design and numerical simulation results
试验组 | d1/mm | h1/mm | D/mm | h2/mm | S/mm2 | El/% |
---|---|---|---|---|---|---|
1 | 5 | 5 | 15 | 25 | 7 | 88.19 |
2 | 4.5 | 4.5 | 14 | 22.5 | 8 | 88.55 |
3 | 4 | 4 | 13 | 20 | 9 | 88.75 |
4 | 3.5 | 3.5 | 12 | 17.5 | 10 | 88.98 |
5 | 3 | 3 | 11 | 15 | 11 | 89.20 |
6 | 2.5 | 2.5 | 10 | 12.5 | 12 | 89.23 |
7 | 2 | 2 | 9 | 10 | 13 | 89.31 |
8 | 1.5 | 1.5 | 8 | 7.5 | 14 | 89.30 |
9 | 1 | 1 | 7 | 5 | 15 | 88.98 |
图4 试验装置及工艺流程1—蓄水槽;2—离心泵控制器;3—离心泵;4—LM60智能蠕动气泵;5—蠕动气泵控制系统;6—流量计;7—球阀;8—变径三通;9—静态混合器;10—微型气液旋流分离器;11—液体缓冲罐;12—液体收集罐;13—底流液相收集罐;14—高速摄像机
Fig.4 Experimental facilities and process
因素 | 符号 | 水平 | ||
---|---|---|---|---|
中心点(0) | 低(-1) | 高(+1) | ||
溢流口直径d1/mm | x1 | 2 | 1 | 3 |
溢流管伸入长度h1/mm | x2 | 2 | 0.5 | 3.5 |
柱体直径D/mm | x3 | 9 | 7 | 11 |
锥体高度h2/mm | x4 | 10 | 5 | 15 |
底流口面积S/mm2 | x5 | 13 | 10 | 16 |
表2 BBD试验设计因素与水平
Table 2 Factors and levels of Box-Behnken design
因素 | 符号 | 水平 | ||
---|---|---|---|---|
中心点(0) | 低(-1) | 高(+1) | ||
溢流口直径d1/mm | x1 | 2 | 1 | 3 |
溢流管伸入长度h1/mm | x2 | 2 | 0.5 | 3.5 |
柱体直径D/mm | x3 | 9 | 7 | 11 |
锥体高度h2/mm | x4 | 10 | 5 | 15 |
底流口面积S/mm2 | x5 | 13 | 10 | 16 |
组号 | x1/mm | x2/mm | x3/mm | x4/mm | x5/mm2 | y1/% |
---|---|---|---|---|---|---|
1 | 2 | 2 | 7 | 5 | 13 | 89.42 |
2 | 3 | 2 | 9 | 10 | 16 | 89.36 |
3 | 2 | 2 | 7 | 10 | 16 | 89.51 |
4 | 2 | 2 | 11 | 10 | 10 | 89.07 |
5 | 2 | 3.5 | 9 | 10 | 10 | 89.26 |
6 | 3 | 2 | 9 | 5 | 13 | 89.39 |
7 | 2 | 3.5 | 9 | 10 | 16 | 89.41 |
8 | 3 | 0.5 | 9 | 10 | 13 | 89.41 |
9 | 2 | 2 | 9 | 10 | 13 | 89.31 |
10 | 2 | 3.5 | 11 | 10 | 13 | 89.16 |
11 | 1 | 0.5 | 9 | 10 | 13 | 89.11 |
12 | 2 | 3.5 | 7 | 10 | 13 | 89.37 |
13 | 1 | 2 | 9 | 10 | 16 | 88.94 |
14 | 2 | 2 | 9 | 5 | 16 | 89.39 |
15 | 2 | 2 | 11 | 10 | 16 | 89.16 |
16 | 1 | 2 | 9 | 10 | 10 | 88.49 |
17 | 2 | 2 | 9 | 10 | 13 | 89.31 |
18 | 1 | 2 | 9 | 15 | 13 | 89.10 |
19 | 3 | 2 | 11 | 10 | 13 | 89.18 |
20 | 1 | 2 | 7 | 10 | 13 | 88.75 |
21 | 2 | 0.5 | 9 | 10 | 10 | 89.29 |
22 | 2 | 2 | 9 | 10 | 13 | 89.31 |
23 | 2 | 3.5 | 9 | 15 | 13 | 89.32 |
24 | 2 | 0.5 | 9 | 10 | 16 | 89.41 |
25 | 2 | 2 | 9 | 10 | 13 | 89.31 |
26 | 2 | 2 | 9 | 10 | 13 | 89.31 |
27 | 2 | 2 | 9 | 10 | 13 | 89.31 |
28 | 3 | 2 | 7 | 10 | 13 | 89.34 |
29 | 2 | 3.5 | 9 | 5 | 13 | 89.32 |
30 | 2 | 2 | 11 | 15 | 13 | 89.16 |
31 | 3 | 2 | 9 | 15 | 13 | 89.39 |
32 | 2 | 0.5 | 7 | 10 | 13 | 89.45 |
33 | 3 | 2 | 9 | 10 | 10 | 89.31 |
34 | 2 | 2 | 11 | 5 | 13 | 89.16 |
35 | 3 | 3.5 | 9 | 10 | 13 | 89.42 |
36 | 2 | 0.5 | 9 | 5 | 13 | 89.30 |
37 | 1 | 2 | 9 | 5 | 13 | 89.10 |
38 | 2 | 2 | 9 | 15 | 16 | 89.39 |
39 | 2 | 0.5 | 11 | 10 | 13 | 89.17 |
40 | 1 | 3.5 | 9 | 10 | 13 | 89.10 |
41 | 1 | 2 | 11 | 10 | 13 | 88.45 |
42 | 2 | 0.5 | 9 | 15 | 13 | 89.30 |
43 | 2 | 2 | 7 | 10 | 10 | 89.44 |
44 | 2 | 2 | 9 | 15 | 10 | 89.24 |
45 | 2 | 2 | 9 | 5 | 10 | 89.27 |
46 | 2 | 2 | 7 | 15 | 13 | 89.42 |
表3 BBD试验设计及性能测试结果
Table 3 Design and separation performance result of Box-Behnken design
组号 | x1/mm | x2/mm | x3/mm | x4/mm | x5/mm2 | y1/% |
---|---|---|---|---|---|---|
1 | 2 | 2 | 7 | 5 | 13 | 89.42 |
2 | 3 | 2 | 9 | 10 | 16 | 89.36 |
3 | 2 | 2 | 7 | 10 | 16 | 89.51 |
4 | 2 | 2 | 11 | 10 | 10 | 89.07 |
5 | 2 | 3.5 | 9 | 10 | 10 | 89.26 |
6 | 3 | 2 | 9 | 5 | 13 | 89.39 |
7 | 2 | 3.5 | 9 | 10 | 16 | 89.41 |
8 | 3 | 0.5 | 9 | 10 | 13 | 89.41 |
9 | 2 | 2 | 9 | 10 | 13 | 89.31 |
10 | 2 | 3.5 | 11 | 10 | 13 | 89.16 |
11 | 1 | 0.5 | 9 | 10 | 13 | 89.11 |
12 | 2 | 3.5 | 7 | 10 | 13 | 89.37 |
13 | 1 | 2 | 9 | 10 | 16 | 88.94 |
14 | 2 | 2 | 9 | 5 | 16 | 89.39 |
15 | 2 | 2 | 11 | 10 | 16 | 89.16 |
16 | 1 | 2 | 9 | 10 | 10 | 88.49 |
17 | 2 | 2 | 9 | 10 | 13 | 89.31 |
18 | 1 | 2 | 9 | 15 | 13 | 89.10 |
19 | 3 | 2 | 11 | 10 | 13 | 89.18 |
20 | 1 | 2 | 7 | 10 | 13 | 88.75 |
21 | 2 | 0.5 | 9 | 10 | 10 | 89.29 |
22 | 2 | 2 | 9 | 10 | 13 | 89.31 |
23 | 2 | 3.5 | 9 | 15 | 13 | 89.32 |
24 | 2 | 0.5 | 9 | 10 | 16 | 89.41 |
25 | 2 | 2 | 9 | 10 | 13 | 89.31 |
26 | 2 | 2 | 9 | 10 | 13 | 89.31 |
27 | 2 | 2 | 9 | 10 | 13 | 89.31 |
28 | 3 | 2 | 7 | 10 | 13 | 89.34 |
29 | 2 | 3.5 | 9 | 5 | 13 | 89.32 |
30 | 2 | 2 | 11 | 15 | 13 | 89.16 |
31 | 3 | 2 | 9 | 15 | 13 | 89.39 |
32 | 2 | 0.5 | 7 | 10 | 13 | 89.45 |
33 | 3 | 2 | 9 | 10 | 10 | 89.31 |
34 | 2 | 2 | 11 | 5 | 13 | 89.16 |
35 | 3 | 3.5 | 9 | 10 | 13 | 89.42 |
36 | 2 | 0.5 | 9 | 5 | 13 | 89.30 |
37 | 1 | 2 | 9 | 5 | 13 | 89.10 |
38 | 2 | 2 | 9 | 15 | 16 | 89.39 |
39 | 2 | 0.5 | 11 | 10 | 13 | 89.17 |
40 | 1 | 3.5 | 9 | 10 | 13 | 89.10 |
41 | 1 | 2 | 11 | 10 | 13 | 88.45 |
42 | 2 | 0.5 | 9 | 15 | 13 | 89.30 |
43 | 2 | 2 | 7 | 10 | 10 | 89.44 |
44 | 2 | 2 | 9 | 15 | 10 | 89.24 |
45 | 2 | 2 | 9 | 5 | 10 | 89.27 |
46 | 2 | 2 | 7 | 15 | 13 | 89.42 |
因素 | 符号 | 水平值 | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | +1 | +2 | ||
溢流分流比/% | x6 | 0.297136 | 2 | 11 | 20 | 21.7029 |
气相体积分数/% | x7 | 1.337788 | 2 | 5.5 | 9 | 9.66222 |
表4 CCD试验因素与水平设计
Table 4 Factors and levels of central composite design
因素 | 符号 | 水平值 | ||||
---|---|---|---|---|---|---|
-2 | -1 | 0 | +1 | +2 | ||
溢流分流比/% | x6 | 0.297136 | 2 | 11 | 20 | 21.7029 |
气相体积分数/% | x7 | 1.337788 | 2 | 5.5 | 9 | 9.66222 |
试验组号 | x6 | x7 | y2/% |
---|---|---|---|
1 | 2 | 9 | 60.46 |
2 | 2 | 2 | 95.54 |
3 | 0.297136 | 5.5 | 52.57 |
4 | 11 | 5.5 | 97.11 |
5 | 11 | 5.5 | 97.11 |
6 | 20 | 2 | 90.82 |
7 | 11 | 1.33778 | 95.11 |
8 | 11 | 5.5 | 97.11 |
9 | 11 | 5.5 | 97.11 |
10 | 11 | 5.5 | 97.11 |
11 | 21.7029 | 5.5 | 91.46 |
12 | 20 | 9 | 93.99 |
13 | 11 | 9.66222 | 99.48 |
表5 CCD试验设计及性能测试结果
Table 5 Design and separation performance result of central composite design
试验组号 | x6 | x7 | y2/% |
---|---|---|---|
1 | 2 | 9 | 60.46 |
2 | 2 | 2 | 95.54 |
3 | 0.297136 | 5.5 | 52.57 |
4 | 11 | 5.5 | 97.11 |
5 | 11 | 5.5 | 97.11 |
6 | 20 | 2 | 90.82 |
7 | 11 | 1.33778 | 95.11 |
8 | 11 | 5.5 | 97.11 |
9 | 11 | 5.5 | 97.11 |
10 | 11 | 5.5 | 97.11 |
11 | 21.7029 | 5.5 | 91.46 |
12 | 20 | 9 | 93.99 |
13 | 11 | 9.66222 | 99.48 |
1 | 刘合, 郝忠献, 王连刚, 等. 人工举升技术现状与发展趋势[J]. 石油学报, 2015, 36(11): 1441-1448. |
Liu H, Hao Z X, Wang L G, et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica, 2015, 36(11): 1441-1448. | |
2 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
Liu H, Gao Y, Pei X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
3 | 邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826. |
Xing L, Li J Y, Zhao L X, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826. | |
4 | 谢向东, 王晔春, 王进芝, 等. 低入口含气率下柱状旋流器气液分离特性研究[J]. 工程热物理学报, 2021, 42(11): 2873-2878. |
Xie X D, Wang Y C, Wang J Z, et al. Gas-liquid separation characteristics in cylindrical cyclone at low inlet void fraction[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2873-2878. | |
5 | 杨蕊, 朱宝锦, 吕超, 等. 脉动条件下旋流场内气液两相流流型及其转变机理[J]. 化工学报, 2022, 73(10): 4389-4398. |
Yang R, Zhu B J, Lyu C, et al. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow[J]. CIESC Journal, 2022, 73(10): 4389-4398. | |
6 | Wang Y A, Chen J Y, Yue T, et al. Measurement of thickness and analysis on flow characteristics of upper swirling liquid film in gas-liquid cylindrical cyclone[J]. Experimental Thermal and Fluid Science, 2021, 123: 110331. |
7 | van Sy L, Van D T. Selection of an optimizing inlet angle for the gas-liquid cylindrical cyclone separator on hydrokinetic behavior[J]. Journal of Advanced Marine Engineering and Technology, 2020, 44(1): 82-87. |
8 | Movafaghian S, Jaua-Marturet J A, Mohan R S, et al. The effects of geometry, fluid properties and pressure on the hydrodynamics of gas-liquid cylindrical cyclone separators[J]. International Journal of Multiphase Flow, 2000, 26(6): 999-1018. |
9 | 周闻, 王康松, 鄂承林, 等. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573. |
Zhou W, Wang K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573. | |
10 | 陈阳, 田思航, 孙婧元, 等. 旋流型气液分离器壁面小孔处气液相分离特性[J]. 化学工程, 2018, 46(8): 48-53. |
Chen Y, Tian S H, Sun J Y, et al. Gas-liquid phase separation characteristics through holes at the wall of a swirling gas-liquid separator[J]. Chemical Engineering (China), 2018, 46(8): 48-53. | |
11 | Yang L L, Zhang J, Ma Y, et al. Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone[J]. Chemical Engineering Science, 2020, 214: 115362. |
12 | 罗小明, 高奇峰, 刘萌, 等. 轴流式气-液旋流分离器分离特性[J]. 石油学报(石油加工), 2020, 36(3): 592-599. |
Luo X M, Gao Q F, Liu M, et al. Separation characteristics of axial-flow gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 592-599. | |
13 | Kolla S S, Mohan R S, Shoham O. Analysis of gas-liquid cylindrical cyclone separator with inlet modifications using fluid-structure interaction[J]. Journal of Energy Resources Technology, 2020, 142(4): 042003. |
14 | Ghodrat M, Kuang S, Yu A, et al. Computational study of the multiphase flow and performance of hydrocyclones: effects of cyclone size and spigot diameter[J]. Industrial & Engineering Chemistry Research, 2013, 52: 16019-16031. |
15 | Tian J Y, Ni L, Song T, et al. An overview of operating parameters and conditions in hydrocyclones for enhanced separations[J]. Separation and Purification Technology, 2018, 206: 268-285. |
16 | Wang Y A, Chen J Y, Yang Y, et al. Experimental and numerical performance study of a downward dual-inlet gas-liquid cylindrical cyclone (GLCC)[J]. Chemical Engineering Science, 2021, 238: 116595. |
17 | Yue T, Chen J Y, Song J F, et al. Experimental and numerical study of upper swirling liquid film (USLF) among gas-liquid cylindrical cyclones (GLCC)[J]. Chemical Engineering Journal, 2019, 358: 806-820. |
18 | 王旱祥, 许传宝, 于长录, 等. 天然气水合物气液分离方案设计与样机试制[J]. 石油机械, 2022, 50(7): 72-79. |
Wang H X, Xu C B, Yu C L, et al. Gas-liquid separation scheme design and prototype manufacturing for natural gas hydrate[J]. China Petroleum Machinery, 2022, 50(7): 72-79. | |
19 | 魏纳, 陈光凌, 郭平, 等. 天然气水合物脱气装置研制及性能试验[J]. 石油钻探技术, 2017, 45(2): 121-126. |
Wei N, Chen G L, Guo P, et al. The development and experimental testing of gas hydrate degassing devices[J]. Petroleum Drilling Techniques, 2017, 45(2): 121-126. | |
20 | 陈广, 阴子良, 叶东东, 等. 酸再生烟气净化旋流器的分离性能[J]. 环境工程学报, 2016, 10(10): 5770-5774. |
Chen G, Yin Z L, Ye D D, et al. Separation of cyclone in purifying smoke of acid regeneration[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5770-5774. | |
21 | 许晓波, 胡大鹏, 邓列征, 等. 旋流喷雾式单重态氧发生器的气液分离初步研究[J]. 强激光与粒子束, 2022, 34(8): 33-39. |
Xu X B, Hu D P, Deng L Z, et al. Preliminary investigation of gas-liguid separation in twisted flow aerosol singlet oxygen generator[J]. High Power Laser and Particle Beams, 2022, 34(8): 33-39. | |
22 | Ni L, Tian J Y, Song T, et al. Optimizing geometric parameters in hydrocyclones for enhanced separations: a review and perspective[J]. Separation & Purification Reviews, 2019, 48(1): 30-51. |
23 | 杨启明. 国外井下气液分离采气新技术研究现状分析[J]. 天然气工业, 2001, 21(2): 85-88, 3. |
Yang Q M. Analysis of present situation of studying new gas recovery technique by downhole gas liquid separation abroad[J]. Natural Gas Industry, 2001, 21(2): 85-88, 3. | |
24 | 朱焕刚, 李宗清, 杨德京, 等. 井下气液分离及回注技术研究现状分析[J]. 石油矿场机械, 2007, 36(7): 7-10. |
Zhu H G, Li Z Q, Yang D J, et al. Analysis of study on present situation of downhole gas/water separation and reinjection[J]. Oil Field Equipment, 2007, 36(7): 7-10. | |
25 | 赵勇, 贾浩民, 李敏, 等. 井下气液分离及同井回注技术的应用[J]. 天然气工业, 2010, 30(1): 56-58, 141. |
Zhao Y, Jia H M, Li M, et al. Application of downhole gas-fluid separation and reinjection in the same well[J]. Natural Gas Industry, 2010, 30(1): 56-58, 141. | |
26 | 李森, 王太文, 李青燕, 等. 井下气液分离及产出水回注技术应用研究[J]. 石油石化节能, 2011, 1(4): 36-38. |
Li S, Wang T W, Li Q Y, et al. Study on application of downhole gas-liquid separation and produced water reinjection technology[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2011, 1(4): 36-38. | |
27 | 张金山, 姜伟, 刘庆, 等. 井下油水分离技术的现状与展望[J]. 化学工程师, 2020, 34(7): 69-72. |
Zhang J S, Jiang W, Liu Q, et al. Present situation and prospect of downhole oil-water separation technology[J]. Chemical Engineer, 2020, 34(7): 69-72. | |
28 | 刘海龙. 同井注采井下气液分离器结构优化设计及流场分析[D]. 大庆: 东北石油大学, 2022. |
Liu H L. Structural optimization design and flow field analysis of downhole gas-liquid separator for injection-production in the singlew well[D]. Daqing: Northeast Petroleum University, 2022. | |
29 | 黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41. |
Huang K T, Chen J Y, Chen Y, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30-41. | |
30 | 李敏. 井下气液分离及回注系统研究[J]. 石油矿场机械, 2006, 35(2): 27-30. |
Li M. A new downhole gas/water separation and reinjection system[J]. Oil Field Equipment, 2006, 35(2): 27-30. | |
31 | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
Zheng C F, Yang W Y, Meng X R, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
32 | 郑春峰, 杨万有, 李昂, 等. 一种新型井下三级高效气液分离器分离特性实验[J]. 石油钻采工艺, 2020, 42(6): 804-810. |
Zheng C F, Yang W Y, Li A, et al. Experimental on the separation behaviors of a new type of three-stage efficient downhole gas-liquid separator[J]. Oil Drilling & Production Technology, 2020, 42(6): 804-810. | |
33 | Meng F C. Study of the performance of a new kind of downhole gas-liquid separation with high gas content[J]. Journal of Energy and Natural Resources, 2019, 8(2): 45-49. |
34 | Lan W J, Wang H X, Li Y Q, et al. Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109743. |
35 | Xing S B, Zhang D, Xu J Y, et al. Investigation on downhole gas-liquid two phase separation and mixing transportation characteristics with high gas fraction[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(3): 032083. |
36 | 刘培坤, 李峰, 杨兴华, 等. 基于CFD的双锥角微型旋流器分离性能的数值模拟[J]. 中国粉体技术, 2019, 25(1): 64-70. |
Liu P K, Li F, Yang X H, et al. Numerical simulation of separation performance of a double cone angle hydrocyclone based on CFD[J]. China Powder Science and Technology, 2019, 25(1): 64-70. | |
37 | 袁惠新, 吴敏浩, 付双成, 等. 微型旋流器溢流口结构参数对SCR废催化剂分离性能的影响[J]. 机械设计与制造, 2020(8): 159-162. |
Yuan H X, Wu M H, Fu S C, et al. Effect of design parameters of a micro hydrocyclone on the separation performance of waste SCR catalyst[J]. Machinery Design & Manufacture, 2020(8): 159-162. | |
38 | 张爽, 赵立新, 刘洋, 等. 脱气除油旋流系统流场分布及分离特性[J]. 化工进展, 2022, 41(1): 75-85. |
Zhang S, Zhao L X, Liu Y, et al. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85. | |
39 | 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005. |
Li Y Y, Hu C R. Experiment Design and Data Processing[M]. Beijing: Chemical Industry Press, 2005. | |
40 | 刘志涛, 田洋阳, 宋伟, 等. 基于响应面法的旋流器直径与处理量关系研究[J]. 石油机械, 2021, 49(12): 89-97. |
Liu Z T, Tian Y Y, Song W, et al. Study on relationship between cyclone diameter and treatment capacity based on response surface method[J]. China Petroleum Machinery, 2021, 49(12): 89-97. | |
41 | 刘冰, 赵振江, 韦尧尧, 等. 分流比对旋流器影响的数值模拟与试验分析[J]. 煤矿机械, 2020, 41(11): 26-29. |
Liu B, Zhao Z J, Wei Y Y, et al. Numerical simulation and experimental analysis of influence of split ratio on hydrocyclone[J]. Coal Mine Machinery, 2020, 41(11): 26-29. | |
42 | 史仕荧, 邓晓辉, 吴应湘, 等. 操作参数对柱形旋流器油水分离性能的影响[J]. 石油机械, 2011, 39(7): 4-8. |
Shi S Y, Deng X H, Wu Y X, et al. The effect of operating parameters on the oil-water separation performance of the cylindrical cyclone[J]. China Petroleum Machinery, 2011, 39(7): 4-8. | |
43 | 邢雷, 李新亚, 蒋明虎, 等. 适用于超低进液量的微型水力旋流器结构优化[J]. 机械工程学报, 2022, 58(23): 251-261. |
Xing L, Li X Y, Jiang M H, et al. Structure optimization of micro-hydrocyclone for ultra-low inlet flow rate[J]. Journal of Mechanical Engineering, 2022, 58(23): 251-261. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[8] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[11] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||