化工学报 ›› 2022, Vol. 73 ›› Issue (2): 770-781.DOI: 10.11949/0438-1157.20211315
孔昕山1(),黄仁星1,康丽霞1,2,3,刘永忠1,2,3(
)
收稿日期:
2021-09-08
修回日期:
2021-11-17
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
刘永忠
作者简介:
孔昕山(1998—),男,硕士研究生,基金资助:
Xinshan KONG1(),Renxing HUANG1,Lixia KANG1,2,3,Yongzhong LIU1,2,3(
)
Received:
2021-09-08
Revised:
2021-11-17
Online:
2022-02-05
Published:
2022-02-18
Contact:
Yongzhong LIU
摘要:
以“数量放大”为特征的模块化化工生产为克服原料供给和产品市场需求波动的生产流程优化操作提供新途径。为了提高生产系统的能量利用效率,需对生产系统中随时间变化的流股预热、冷却和反应热分时段进行储存和调度。针对可再生能源驱动的甲醇模块化生产系统,本文提出了分时储热策略,通过储罐设置及流股匹配、储罐储热温区确定和储罐容量配置及调度三步对甲醇模块化生产中分时储热系统进行优化设计,获得了分时储热系统的最优配置和优化调度方案。研究表明:在甲醇模块化生产系统中,分时储热系统可将前阶段的热量储存供后续阶段调用,以实现系统能量的最大化利用,而储热的适量废弃可降低储热系统的投资费用。本文所提出的储热系统优化方法可为波动生产过程中分时储热系统的优化设计提供分析工具。
中图分类号:
孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
Xinshan KONG, Renxing HUANG, Lixia KANG, Yongzhong LIU. Optimal design of time-sharing heat storage system for modular production of methanol[J]. CIESC Journal, 2022, 73(2): 770-781.
Capital cost (Ccap)/USD | Maintenance cost (Cmai)/USD | Min LF (LFmin) | Max LF (LFmax) | Lifetime (n)/y | Operating cost (USD/MWh) | |
---|---|---|---|---|---|---|
STij | 0 | 0.85[ | 20[ | — | ||
HE11 | 0 | 1 | 10[ | 23.06 | ||
HE12 | 0 | 1 | 10[ | 23.06 | ||
HE13 | 0 | 1 | 10[ | 23.06 | ||
HE14 | 0 | 1 | 10[ | 23.06 |
表1 储罐和空冷器的费用计算参数
Table 1 Cost calculation data for storage tanks and air coolers
Capital cost (Ccap)/USD | Maintenance cost (Cmai)/USD | Min LF (LFmin) | Max LF (LFmax) | Lifetime (n)/y | Operating cost (USD/MWh) | |
---|---|---|---|---|---|---|
STij | 0 | 0.85[ | 20[ | — | ||
HE11 | 0 | 1 | 10[ | 23.06 | ||
HE12 | 0 | 1 | 10[ | 23.06 | ||
HE13 | 0 | 1 | 10[ | 23.06 | ||
HE14 | 0 | 1 | 10[ | 23.06 |
Scenario | ST11/t | ST12/t | ST13/t | ST14/t |
---|---|---|---|---|
S1 | 1.12×104 | 1.08×103 | 7.71×103 | 8.68×103 |
S2 | 1.12×104 | 1.33×102 | 7.38×101 | 8.20×101 |
表2 情形S1和情形S2中储罐容量配置
Table 2 The capacity configuration of storage tanks in Scenario 1 and Scenario 2
Scenario | ST11/t | ST12/t | ST13/t | ST14/t |
---|---|---|---|---|
S1 | 1.12×104 | 1.08×103 | 7.71×103 | 8.68×103 |
S2 | 1.12×104 | 1.33×102 | 7.38×101 | 8.20×101 |
Scenario | HE11/MW | HE12/MW | HE13/MW | HE14/MW |
---|---|---|---|---|
S1 | 0 | 0 | 0 | 4.25 |
S2 | 1.24 | 0.53 | 2.15 | 4.25 |
表3 情形S1和情形S2中空冷器热负荷配置
Table 3 Heat exchanger heat duty configuration in Scenario 1 and Scenario 2
Scenario | HE11/MW | HE12/MW | HE13/MW | HE14/MW |
---|---|---|---|---|
S1 | 0 | 0 | 0 | 4.25 |
S2 | 1.24 | 0.53 | 2.15 | 4.25 |
Scenario | Total cost/USD | ST cost/USD | HE cost/USD | Operating cost/USD |
---|---|---|---|---|
S1 | 1.15×105 | 1.09×105 | 7.81×102 | 5.37×103 |
S2 | 6.86×104 | 4.79×104 | 1.65×103 | 1.91×104 |
表4 情形S1和情形S2中设备投资费用与操作费用
Table 4 Equipment costs and operating costs in Scenario 1 and Scenario 2
Scenario | Total cost/USD | ST cost/USD | HE cost/USD | Operating cost/USD |
---|---|---|---|---|
S1 | 1.15×105 | 1.09×105 | 7.81×102 | 5.37×103 |
S2 | 6.86×104 | 4.79×104 | 1.65×103 | 1.91×104 |
1 | Liu Z M, Lim M Q, Kraft M, et al. Simultaneous design and operation optimization of renewable combined cooling heating and power systems[J]. AIChE Journal, 2020, 66(12): e17039. |
2 | Allman A, Palys M J, Daoutidis P. Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study[J]. AIChE Journal, 2019, 65(7): e16434. |
3 | Varone A, Ferrari M. Power to liquid and power to gas: an option for the German Energiewende[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 207-218. |
4 | Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
5 | Rivarolo M, Bellotti D, Magistri L, et al. Feasibility study of methanol production from different renewable sources and thermo-economic analysis[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2105-2116. |
6 | Yang M B, You F Q. Modular methanol manufacturing from shale gas: techno-economic and environmental analyses of conventional large-scale production versus small-scale distributed, modular processing[J]. AIChE Journal, 2018, 64(2): 495-510. |
7 | Seifert T, Sievers S, Bramsiepe C, et al. Small scale, modular and continuous: a new approach in plant design[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52: 140-150. |
8 | Baldea M, Edgar T F, Stanley B L, et al. Modular manufacturing processes: status, challenges, and opportunities[J]. AIChE Journal, 2017, 63(10): 4262-4272. |
9 | Lier S, Paul S, Ferdinand D, et al. Modular process engineering: development of apparatuses for transformable production systems[J]. ChemBioEng Reviews, 2017, 4(1): 60-70. |
10 | Arora A, Li J P, Zantye M S, et al. Design standardization of unit operations for reducing the capital intensity and cost of small-scale chemical processes[J]. AIChE Journal, 2020, 66(2): e16802. |
11 | Chen Q, Grossmann I E. Effective generalized disjunctive programming models for modular process synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5873-5886. |
12 | Lier S, Grünewald M. Net present value analysis of modular chemical production plants[J]. Chemical Engineering & Technology, 2011, 34(5): 809-816. |
13 | Palys M J, Allman A, Daoutidis P. Exploring the benefits of modular renewable-powered ammonia production: a supply chain optimization study[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5898-5908. |
14 | Dannemand M, Perers B, Furbo S. Performance of a demonstration solar PVT assisted heat pump system with cold buffer storage and domestic hot water storage tanks[J]. Energy and Buildings, 2019, 188/189: 46-57. |
15 | 施素丽, 鹿院卫, 于强, 等. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864. |
Shi S L, Lu Y W, Yu Q, et al. Optimization of heat removal modes for heat exchanger in molten salt single storage tank[J]. CIESC Journal, 2019, 70(3): 857-864. | |
16 | Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191. |
17 | Farzan H, Zaim E H. Feasibility study on using asphalt pavements as heat absorbers and sensible heat storage materials in solar air heaters: an experimental study[J]. Journal of Energy Storage, 2021, 44: 103383. |
18 | Kumar A, Saha S K. Performance analysis of a packed bed latent heat thermal energy storage with cylindrical-shaped encapsulation[J]. International Journal of Energy Research, 2021, 45(9): 13130-13148. |
19 | Liu J, Baeyens J, Deng Y M, et al. High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage[J]. Journal of Environmental Management, 2020, 267: 110582. |
20 | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
21 | Ji H C, Wang H X, Yang J Y, et al. Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks[J]. Energy, 2021, 234: 121237. |
22 | Wan Z J, Wei J J, Qaisrani M A, et al. Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J]. Applied Thermal Engineering, 2020, 167: 114775. |
23 | Lou W R, Fan Y L, Luo L G. Single-tank thermal energy storage systems for concentrated solar power: flow distribution optimization for thermocline evolution management[J]. Journal of Energy Storage, 2020, 32: 101749. |
24 | Mao Q J, Chen H Z, Yang Y Z. Energy storage performance of a PCM in the solar storage tank[J]. Journal of Thermal Science, 2019, 28(2): 195-203. |
25 | Singh A, Khaewhom S, Kaistha N. Design and control of a small-scale isolated concentrated solar power generation unit[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 623-638. |
26 | Zhang H F, Wang L G, van Herle J, et al. Techno-economic optimization of CO2-to-methanol with solid-oxide electrolyzer[J]. Energies, 2019, 12(19): 3742. |
27 | Beccali M, Brunone S, Finocchiaro P, et al. Method for size optimisation of large wind-hydrogen systems with high penetration on power grids[J]. Applied Energy, 2013, 102: 534-544. |
28 | 徐英, 杨一凡, 朱萍, 等. 球罐和大型储罐[M]. 北京: 化学工业出版社, 2001: 127-128. |
Xu Y, Yang Y F, Zhu P, et al. Spherical Tanks and Large Storage Tanks[M]. Beijing: Chemical Industry Press, 2001: 127-128. | |
29 | Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm[J]. Desalination, 2018, 435: 221-234. |
30 | 马义伟. 空冷器设计与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 71-95. |
Ma Y W. Design and Application of Air Cooler[M]. Harbin: Harbin Institute of Technology Press, 1998: 71-95. | |
31 | Kumar J A. Thermal performance analysis of pump less earthern pipe evaporative air cooler[J]. International Journal of Engineering Research and Applications, 2012, 2(2): 032-040. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[10] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[11] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[14] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[15] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||