1 |
Taer E. Activated carbon electrode made from coconut husk waste for supercapacitor application[J]. International Journal of Electrochemical Science, 2018: 12072-12084.
|
2 |
Heidarinejad Z, Dehghani M H, Heidari M, et al. Methods for preparation and activation of activated carbon: a review[J]. Environmental Chemistry Letters, 2020, 18(2): 393-415.
|
3 |
Al Subhi H, Adeeb M S, Pandey M, et al. Effect of different activation agents on the pollution removal efficiency of date seed activated carbon: process optimization using response surface methodology[J]. Applied Water Science, 2020, 10(7): 1-9.
|
4 |
王浩, 李琳, 王春雷, 等. 聚酰亚胺基高比表面活性炭及其电化学性能研究[J]. 无机材料学报, 2017, 32(11): 1181-1187.
|
|
Wang H, Li L, Wang C L, et al. Preparation and electrochemical performance of polyimide-based activated carbons with high surface area[J]. Journal of Inorganic Materials, 2017, 32(11): 1181-1187.
|
5 |
Liu B, Du C, Chen J J, et al. Preparation of well-developed mesoporous activated carbon fibers from plant pulp fibers and its adsorption of methylene blue from solution[J]. Chemical Physics Letters, 2021, 771: 138535.
|
6 |
Merzougui Z, Azoudj Y, Bouchemel N, et al. Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water[J]. Desalination and Water Treatment, 2011, 29(1/2/3): 236-240.
|
7 |
Sun P, Zhang S N, Bi H, et al. Tuning nitrogen species and content in carbon materials through constructing variable structures for supercapacitors[J]. Journal of Inorganic Materials, 2021, 36(7): 766.
|
8 |
Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials, 2021, 36(1): 49-68.
|
9 |
Endo M, Takeda T, Kim Y J, et al. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons[J]. Carbon Letters, 2001,1(3): 117-128.
|
10 |
Kim K S, Park S J. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor[J]. Journal of Electroanalytical Chemistry, 2012, 673: 58-64.
|
11 |
Gandla D, Wu X D, Zhang F M, et al. High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels[J]. ACS Omega, 2021, 6(11): 7615-7625.
|
12 |
许伟佳, 邱大平, 刘诗强, 等. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632.
|
|
Xu W J, Qiu D P, Liu S Q, et al. Preparation of cork-derived porous activated carbon for high performance supercapacitors [J]. Journal of Inorganic Materials, 2019, 34(6): 625-632.
|
13 |
Afif A, Rahman S M, Tasfiah Azad A, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage — a review[J]. Journal of Energy Storage, 2019, 25: 100852.
|
14 |
左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302.
|
|
Zuo S L. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302.
|
15 |
左宋林. 磷酸活化法制备活性炭综述(Ⅰ): 磷酸的作用机理[J]. 林产化学与工业, 2017, 37(3): 1-9.
|
|
Zuo S L. Review on phosphoric acid activation for preparation of activated carbon (Ⅰ): Roles of phosphoric acid[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 1-9.
|
16 |
Quach N K N, Yang W D, Chung Z J, et al. The influence of the activation temperature on the structural properties of the activated carbon xerogels and their electrochemical performance[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-9.
|
17 |
苟进胜, 常建民, 任学勇. 生物质热解过程中氮元素迁移规律研究进展[J]. 科技导报, 2012, 30(14): 70-74.
|
|
Gou J S, Chang J M, Ren X Y. A review on the release characterization of nitrogen speicies during biomass pyrolysis[J]. Science & Technology Review, 2012, 30(14): 70-74.
|
18 |
Rawal S, Kumar Y, Mandal U K, et al. Synthesis and electrochemical study of phosphorus-doped porous carbon for supercapacitor applications[J]. SN Applied Sciences, 2021, 3(2): 1-14.
|
19 |
Ghosh S, Barg S, Jeong S M, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239.
|
20 |
Shang M, Zhang J, Liu X C, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science, 2021, 542: 148697.
|
21 |
Yang Z, Gao Y, Zhao Z, et al. Phytic acid assisted formation of P-doped hard carbon anode with enhanced capacity and rate capability for lithium ion capacitors[J]. Journal of Power Sources, 2020, 474: 228500.
|
22 |
Dou Q Y, Park H S. Perspective on high-energy carbon-based supercapacitors[J]. Energy & Environmental Materials, 2020, 3(3): 286-305.
|
23 |
Liu Y Z, Wang H, Li C C, et al. Hierarchical flaky porous carbon derived from waste polyimide film for high-performance aqueous supercapacitor electrodes[J]. International Journal of Energy Research, 2022, 46(1): 370-382.
|
24 |
Jiang C L, Yakaboylu G A, Yumak T, et al. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes[J]. Renewable Energy, 2020, 155: 38-52.
|
25 |
Koutcheiko S, Vorontsov V. Activated carbon derived from wood biochar and its application in supercapacitors[J]. Journal of Biobased Materials and Bioenergy, 2013, 7(6): 733-740.
|