化工学报 ›› 2015, Vol. 66 ›› Issue (8): 3091-3097.DOI: 10.11949/j.issn.0438-1157.20150702
朱丽华, 孙菡蕾, 曹志凯, 郑进保, 张诺伟, 陈秉辉
收稿日期:
2015-05-26
修回日期:
2015-06-10
出版日期:
2015-08-05
发布日期:
2015-08-05
通讯作者:
陈秉辉
基金资助:
国家自然科学基金项目(20973140,201106118,21303140)。
ZHU Lihua, SUN Hanlei, CAO Zhikai, ZHENG Jinbao, ZHANG Nuowei, CHEN Binghui
Received:
2015-05-26
Revised:
2015-06-10
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (20973140, 201106118, 21303140).
摘要:
基于催化剂多活性中心分工协同作用可活化两种或多种反应物,本研究工作以一种新的制备策略对贵金属-过渡金属-过渡金属氧化物催化剂进行合理设计,构筑金属与金属氧化物双活性中心。结果发现,贵金属负载于过渡金属/过渡金属氧化物(NM-TM/TMO)结构的催化剂在加氢反应中具有优异的催化活性。同时,热处理方法可有效调控催化剂微观结构,并对此构效关系进行了较为深入的研究。
中图分类号:
朱丽华, 孙菡蕾, 曹志凯, 郑进保, 张诺伟, 陈秉辉. 多活性中心协同加氢纳米催化剂的设计和制备[J]. 化工学报, 2015, 66(8): 3091-3097.
ZHU Lihua, SUN Hanlei, CAO Zhikai, ZHENG Jinbao, ZHANG Nuowei, CHEN Binghui. Design and synthesis of hydrogenation nanocatalyst with synergetic multiple catalytic sites[J]. CIESC Journal, 2015, 66(8): 3091-3097.
[1] | Green I X, Tang W, Neurock M, Yates Jr J T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst [J]. Science, 2011, 333 (6043): 736-739. |
[2] | Li H, Bian Z F, Zhu J, Huo Y, Li H, Lu Y F. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity [J]. J. Am. Chem. Soc., 2007, 129 (15): 4538-4539. |
[3] | Fujitani T, Nakamura I. Mechanism and active sites of the oxidation of CO over Au/TiO2 [J]. Angew. Chem. Int. Ed., 2011, 50 (43): 10144-10147. |
[4] | Bennett R A, Stone P, Bowker M. Pd nanoparticle enhanced re-oxidation of non-stoichiometric TiO2: STM imaging of spillover and a new form of SMSI [J]. Catal. Lett., 1999, 59 (2/4): 99-105. |
[5] | Baker L R, Kennedy G, Van Spronsen M, Kennedy G, Spronsen M V, Hervier A, Cai X, Chen S, Wang L L, Somorjai G A. Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions [J]. J. Am. Chem. Soc., 2012, 134 (34): 14208-14216. |
[6] | Li P, Wei Z, Wu T, Peng Q, Li Y. Au-ZnO hybrid nanopyramids and their photocatalytic properties [J]. J. Am. Chem. Soc., 2011, 133 (15): 5660-5663. |
[7] | Wang C, Yin H, Dai S, Sun S. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation [J]. Chem. Mater., 2010, 22 (10): 3277-3282. |
[8] | Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt/FeOx [J]. Nat. Chem., 2011, 3 (8): 634-641. |
[9] | Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T. Remarkable performance of Ir/FeOx single-atom catalyst in water gas shift reaction [J]. J. Am. Chem. Soc., 2013, 135 (41): 15314-15317. |
[10] | Chen S, Si R, Taylor E, Janzen J, Chen J. Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation [J]. J. Phy. Chem. C, 2012, 116 (23): 12969-12976. |
[11] | Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X. Catalytically active single-atom sites fabricated from silver particles [J]. Angew. Chem. Int. Ed., 2012, 51 (17): 4198-4203. |
[12] | Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure [J]. Chem. Sci., 2012, 3: 1157-1161. |
[13] | Wang A Q, Liu X Y, Mou C Y, Zhang T. Understanding the synergistic effects of gold bimetallic catalysts [J]. J. Catal., 2013, 308: 258-271. |
[14] | Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Chen J M, Lee J F, Lin T S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. J. Am. Chem. Soc., 2012, 134 (24): 10251-10258. |
[15] | Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability [J]. Science, 2007, 315 (5811): 493-497. |
[16] | Pawelec B, La Parola V, Navarro R M, Murcia-Mascarós S, Fierro J L G. On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics [J]. Carbon, 2006, 44 (1): 84-98. |
[17] | Venezia A M, Parola V L, Pawelec B, Fierro J L G. Hydrogenation of aromatics over Au-Pd/SiO2-Al2O3 catalysts: support acidity effect [J]. Appl. Catal. A: Gen., 2004, 264 (1): 43-51. |
[18] | Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G. Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation [J]. Angew. Chem. Int. Ed., 2004, 43 (11): 1397-1399. |
[19] | Deshmukh R R, Lee J W, Shin U S, Lee J Y, Song C E. Hydrogenation of arenes by dual activation: reduction of substrates ranging from benzene to C60 fullerene under ambient conditions [J]. Angew. Chem. Int. Ed., 2008, 47 (45): 8615-8617. |
[20] | Zhu L, Jiang Y, Zheng J, Zhang N, Yu C, Li Y, Pao C W, Chen J L, Jin C, Lee J F, Zhong C J, Chen B H. Ultrafine nanoparticle-supported Ru-nanoclusters with ultrahigh catalytic activity [J]. Small, 2015. DOI: 10.1002/smll.201500654. |
[21] | Zhu L, Yang Z, Zheng J, Hu W, Zhang N, Li Y, Zhong C J, Ye H, Chen B H. Decoration of Co/Co3O4 nanoparticles with Ru nanoclusters: a new strategy for design of highly-active hydrogenation [J]. J. Mater. Chem. A, 2015, 3 (22): 124-132. DOI: 10.1039/C5TA02452H. |
[22] | Miao S, Liu Z, Han B, Huang J, Sun Z, Zhang J, Jiang T. Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene [J]. Angew. Chem. Int. Ed., 2006, 45 (2): 266-269. |
[23] | Zahmakiran M, Özkar S. Intrazeolite ruthenium(0) nanoclusters: a superb catalyst for the hydrogenation of benzene and the hydrolysis of sodium borohydride [J]. Langmuir, 2008, 24 (14): 7065-7067. |
[24] | Dyson P J, Ellis D J, Welton T, Thomas W. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst [J]. Chem. Commun., 1999, (1): 25-26. |
[25] | Su F, Lv L, Lee F Y, Liu T, Cooper A I, Zhao X S. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics [J]. J. Am. Chem. Soc., 2007, 129 (46): 14213-14223. |
[26] | Niembro S, Donnici S, Shafir A, Vallribera A, Buil M L, Esteruelas M A, Larramona L. Perfluoro-tagged rhodium and ruthenium nanoparticles immobilized on silica gel as highly active catalysts for hydrogenation of arenes under mild conditions [J]. New J. Chem., 2013, 37 (2): 278-282. |
[27] | Yao K X, Liu X, Li Z, Li C C, Zeng H C, Han Y. Preparation of a Ru-nanoparticles/defective-graphene composite as a highly efficient arene-hydrogenation catalyst [J]. ChemCatChem, 2012, 4 (12): 1938-1942. |
[28] | Domínguez-Quintero O, Martínez S, Henríquez Y, D'Ornelas L, Krentzien H, Osuna J. Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity [J]. J. Mol. Catal. A: Chem., 2003, 197 (1/2): 185-191. |
[29] | Schulz J, Roucoux A, Patin H. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system [J]. Chem. Eur. J., 2000, 6 (4): 618-624. |
[30] | Pan H B, Wai C M. Sonochemical one-pot synthesis of carbon nanotube-supported rhodium nanoparticles for room-temperature hydrogenation of arenes [J]. J. Phy. Chem. C, 2009, 113 (46): 19782-19788. |
[31] | Barbaro P, Bianchini C, Dal Santo V, Meli A, Moneti S, Pirovano C, Psaro R, Sordelli L, Vizza F. Benzene hydrogenation by silica-supported catalysts made of palladium nanoparticles and electrostatically immobilized rhodium single sites [J]. Organometallics, 2008, 27 (12): 2809-2824. |
[32] | Yoon B, Pan H B, Wai C M. Relative catalytic activities of carbon nanotube-supported metallic nanoparticles for room-temperature hydrogenation of benzene [J]. J. Phy. Chem. C, 2009, 113 (4): 1520-1525. |
[33] | Duan H, Wang D, Kou Y, Li Y. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation [J]. Chem. Commun., 2013, 49 (3): 303-305. |
[34] | Zhu L, Sun H, Fu H, Zheng J, Zhang N, Li Y, Chen B H. Effect of ruthenium nickel bimetallic composition on the catalytic performance for benzene hydrogenation to cyclohexane [J]. Appl. Catal. A. Gen., 2015, 499 (25): 124-132. DOI: 10.1016/j.apcata.2015.04.016. |
[35] | Zhu L, Cao M, Li L, Tang Y, Zhang N, Zheng J, Zhou H, Li Y, Yang L, Zhong C J, Chen B H. Synthesis of different ruthenium nickel bimetallic nanostructures and an investigation of the structure-activity relationship for benzene hydrogenation to cyclohexane [J]. ChemCatChem, 2014, 6 (7): 2039-2046. |
[36] | Zhu L, Zheng L, Du K, Fu H, Li Y, You G, Chen B H. An efficient and stable Ru-Ni/C nano-bimetallic catalyst with a comparatively low Ru loading for benzene hydrogenation under mild reaction conditions [J]. RSC Adv., 2013, 3 (3): 713-719. |
[37] | Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts [J]. Science, 2006, 311 (5759): 362-365. |
[38] | Chen G, Desinan S, Nechache R, Rosei R, Rosei F, Ma D. Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles [J]. Chem. Commun., 2011, 47 (22): 6308-6310. |
[39] | Chen G, Desinan S, Rosei R, Rosei F, Ma D. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane [J]. Chem. Eur. J., 2012, 18 (25): 7925-7930. |
[40] | Yang Y, Gao G, Zhang X, Li F. Facile fabrication of composition-tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation [J]. ACS Catal., 2014, 4 (5): 1419-1425. |
[41] | Solliard C, Flueli M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum [J]. Surf. Sci., 1985, 156 (1): 487-494.alyst[J]. ChemCatChem, 2012, 4(12): 1938-1942. |
[28] | Domínguez-Quintero O, Martínez S, Henríquez Y, D'Ornelas L, Krentzien H, Osuna J. Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity[J]. J. Mol. Catal. A: Chem., 2003, 197(1-2): 185-191. |
[29] | Schulz J, Roucoux A, Patin H. Stabilized rhodium(0) nanoparticles: A reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system[J]. Chem. Eur. J., 2000, 6(4): 618-624. |
[30] | Pan H B, Wai C M. Sonochemical One-Pot synthesis of carbon nanotube-supported rhodium nanoparticles for room-temperature hydrogenation of arenes[J]. J. Phy. Chem. C, 2009, 113(46): 19782-19788. |
[31] | Barbaro P, Bianchini C, Dal Santo V, Meli A, Moneti S, Pirovano C, Psaro R, Sordelli L, Vizza F. Benzene hydrogenation by silica-supported catalysts made of palladium nanoparticles and electrostatically immobilized rhodium single sites[J]. Organometallics, 2008, 27(12): 2809-2824. |
[32] | Yoon B, Pan H B, Wai C M. Relative Catalytic Activities of Carbon Nanotube-supported metallic nanoparticles for room-temperature hydrogenation of benzene[J]. J. Phy. Chem. C, 2009, 113(4): 1520-1525. |
[33] | Duan H, Wang D, Kou Y, Li Y. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation[J]. Chem. Commun., 2013, 49(3): 303-305. |
[34] | Zhu L, Sun H, Fu H, Zheng J, Zhang N, Li Y, Chen B H. Effect of ruthenium nickel bimetallic composition on the catalytic performance for benzene hydrogenation to cyclohexane[J]. Appl. Catal. A. Gen., 2015, DOI: 10.1016/j.apcata.2015.04.016. |
[35] | Zhu L, Cao M, Li L, Tang Y, Zhang N, Zheng J, Zhou H, Li Y, Yang L, Zhong C J, Chen B H. Synthesis of different ruthenium nickel bimetallic nanostructures and an investigation of the structure-activity relationship for benzene hydrogenation to cyclohexane[J]. ChemCatChem, 2014, 6(7): 2039-2046. |
[36] | Zhu L, Zheng L, Du K, Fu H, Li Y, You G, Chen B H. An efficient and stable Ru-Ni/C nano-bimetallic catalyst with a comparatively low Ru loading for benzene hydrogenation under mild reaction conditions[J]. RSC Adv., 2013, 3(3): 713-719. |
[37] | Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science, 2006, 311(5759): 362-365. |
[38] | Chen G, Desinan S, Nechache R, Rosei R, Rosei F, Ma D. Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles[J]. Chem. Commun., 2011, 47(22): 6308-6310. |
[39] | Chen G, Desinan S, Rosei R, Rosei F, Ma D. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane[J]. Chem. Eur. J., 2012, 18(25): 7925-7930. |
[40] | Yang Y, Gao G, Zhang X, Li F. Facile fabrication of composition-tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation[J]. ACS Catal., 2014, 4(5): 1419-1425. |
[41] | Solliard C, Flueli M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum[J]. Surf. Sci., 1985, 156, Part 1(0): 487-494. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[7] | 梁梦欣, 郭艳, 王世栋, 张宏伟, 袁珮, 鲍晓军. 氮化碳负载钯催化剂的制备及对SBS选择性催化加氢性能的研究[J]. 化工学报, 2023, 74(2): 766-775. |
[8] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[9] | 沈辰阳, 孙楷航, 张月萍, 刘昌俊. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156. |
[10] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[11] | 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816. |
[12] | 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007. |
[13] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[14] | 王峥, 许锋, 罗雄麟. 乙炔加氢串联反应器全周期乙炔转化率最优分配研究[J]. 化工学报, 2022, 73(10): 4551-4564. |
[15] | 尤红运, 林景骏, 黄凯越, 舒日洋, 田志鹏, 王超, 陈颖. 溶剂效应对木质素酚类化合物加氢反应的影响机理[J]. 化工学报, 2022, 73(10): 4498-4506. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||