化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2677-2689.doi: 10.11949/0438-1157.20220140

• 催化、动力学与反应器 • 上一篇    下一篇

Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究

孟博1(),刘艳萍1,蒋新科1,韩一帆1,2()   

  1. 1.郑州大学先进功能材料制造教育部工程研究中心,河南 郑州 450001
    2.华东理工大学,化学工程联合国家重点实验室,上海 200237
  • 收稿日期:2022-01-23 修回日期:2022-03-08 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 韩一帆 E-mail:mengbo8305@zzu.edu.cn;yifanhan@ecust.edu.cn
  • 作者简介:孟博(1983—),男,博士研究生,副教授,mengbo8305@zzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21606209)

The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas

Bo MENG1(),Yanping LIU1,Xinke JIANG1,Yifan HAN1,2()   

  1. 1.Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
    2.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2022-01-23 Revised:2022-03-08 Published:2022-06-05 Online:2022-06-30
  • Contact: Yifan HAN E-mail:mengbo8305@zzu.edu.cn;yifanhan@ecust.edu.cn

摘要:

催化剂结构调控及反应过程普遍面对多层次多尺度结构的复杂系统,从宏观合成条件到催化剂结构尺度调控,从催化性能到催化剂表面活性位尺度调控,均离不开对催化体系介尺度结构的认识。采用四种方式(低温共沉淀、沉积沉淀、前体混合煅烧及机械混合)制备不同结构Fe-Mn催化剂(Fe与Mn摩尔比为1∶4),探究催化剂结构对其活化历程、铁碳化合物分布以及催化合成气制烯烃性能的影响。结果表明,合成方法对催化剂结构有显著影响,体现在三个方面:活化过程、铁碳化合物尺寸及催化反应性能。发现共沉淀制备的Fe-Mn催化剂显示出较高的CO转化率(20.07%)、烯烷比(2.32)及铁时空收率(4.37×10-5 mol CO?(g Fe)-1?s-1),这主要得益于该催化剂活化后形成的较小的铁碳化合物颗粒尺寸及更多的Fe5C2活性相。

关键词: 催化剂, 铁碳化合物, 介尺度, 烯烃, 合成气

Abstract:

Complex systems with multi-level and multi-scale structures are widely encountered in the structure optimization of catalysts and catalytic reaction process, from synthesis conditions to structure regulation of catalysts, from catalytic performance to the active sites regulation, it is important to understand mesoscale structure of catalytic system. In this paper, Fe-Mn catalyst precursors (Fe/Mn mole ratio 1/4) with different structures were prepared by four methods (low-temperature co-precipitation, deposition-precipitation, calcination of mixed precursors, and mechanical mixing). The relationship between their structure and activation process, distribution of iron carbides and the catalytic performance for preparation of olefins from syngas were investigated. The results showed that the synthesis method had a significant impact on the structure of the catalysts, which mainly reflected in three aspects: activation process, iron carbides size and catalytic performance. The Fe-Mn catalysts prepared by co-precipitation had shown a higher CO conversion rate (20.07%), olefin/paraffinratio (2.32), and iron space-time yield (4.37×10-5 mol CO?(g Fe)-1?s-1), which were mainly due to the smaller particle size of iron-carbon compounds and more Fe5C2 active phases formed after the catalyst was activated.

Key words: catalyst, iron carbides, mesoscale, olefins, syngas

中图分类号: 

  • O 643.36

图1

4种合成方法制备过程示意图"

图2

不同合成方法Fe-Mn催化剂前体XRD谱图"

图3

不同合成方法Fe-Mn催化剂XRD谱图"

表1

Fe-Mn催化剂的织构性质"

催化剂比表面积/(m2?g-1)孔容/ (m3?g-1)孔径/nm平均尺寸/nm
Fe(纯铁)91.040.298.6965.91
GC158.610.336.0337.83
CC-Fe120.290.276.6249.88
CC-Mn147.980.367.1940.55
JH-hd124.470.276.4548.21
JH-dh98.760.309.1960.76
Mn(纯锰)102.310.277.6158.64

图4

不同合成方法Fe-Mn催化剂吸脱附曲线及孔径分布"

图5

不同合成方法Fe-Mn催化剂SEM图"

图6

粒径分布"

图7

不同合成方法Fe-Mn催化剂的拉曼光谱图"

图8

不同合成方法Fe-Mn催化剂的H2-TPR谱图"

图9

10% CO/Ar还原过程中Fe-Mn催化剂的原位XRD分析"

图10

不同合成方法Fe-Mn催化剂结构演变过程"

表2

不同合成方法Fe-Mn催化剂的晶相含量"

催化剂晶相含量/%
MnFe2O4Fe5C2Fe3CFe2CMnO
GC17.955.226.9
CC-Fe17.115.962.05.0
CC-Mn31.720.331.716.3
JH-hd20.99.369.8
JH-dh37.938.623.5

表3

不同合成方法Fe-Mn催化剂的晶粒尺寸"

催化剂晶粒尺寸/nm
Fe5C2Fe3C
GC19.6928.44
CC-Fe20.8016.82
CC-Mn26.6827.12
JH-hd27.1421.68
JH-dh26.79

表4

不同合成方法Fe-Mn催化剂的STO性能数据汇总"

催化剂

CO

conversion/%

FTY

CO2

selectivity/%

Hydrocarbon distribution/%αO/P
CH4C2~40C2~4=C5+
GC20.074.376.3713.2817.4538.6024.290.542.32
CC-Fe15.492.7722.9717.5514.4820.1119.710.711.47
CC-Mn14.362.2333.089.4914.1927.9515.280.532.25
JH-hd8.411.5520.8426.1313.4423.6215.970.581.99
JH-dh4.630.8917.2321.5614.1426.0820.980.552.04

图11

Fe-Mn催化剂催化STO反应性能分析"

1 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度: 复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620.
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620.
2 程道建. 双金属纳米催化剂介尺度结构:理论和实验研究[C]// 2015年中国化工学会年会. 2015: 2193.
Cheng D J. Mesoscale structure of bimetallic nanocatalysts: theoretical and experimental studies[C]// 2015 CIESC Annual Meeting. 2015: 2193.
3 Li H, Zeng X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets[J]. ACS Nano, 2012, 6(3): 2401-2409.
4 Zhu C Q, Li H, Huang Y F, et al. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant[J]. Physical Review Letters, 2013, 110(12): 126101.
5 Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444.
6 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444.
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro- /nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444.
7 Rofer-Depoorter C K. A comprehensive mechanism for the Fischer-Tropsch synthesis[J]. Chemical Reviews, 1981, 81(5): 447-474.
8 Iglesia E, Soled S L, Fiato R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. Journal of Catalysis, 1992, 137(1): 212-224.
9 Carballo J M G, Finocchio E, García-Rodriguez S, et al. Insights into the deactivation and reactivation of Ru/TiO2 during Fischer-Tropsch synthesis[J]. Catalysis Today, 2013, 214: 2-11.
10 Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem.Rev., 2007, 107(5): 1692-1744.
11 董子超, 吴玉, 张博风, 等. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656.
Dong Z C, Wu Y, Zhang B F, et al. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656.
12 夏明, 李江兵. 费托合成制低碳烯烃铁基催化剂研究进展[J]. 化工技术与开发, 2012, 41(2): 18-23.
Xia M, Li J B. Research advances in making light olefins for iron-based Fischer-Tropsch synthesis catalysts[J]. Technology & Development of Chemical Industry, 2012, 41(2): 18-23.
13 Zhang Q H, Kang J C, Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058.
14 Lohitharn N, Goodwin J G. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: investigation at the active site level using SSITKA[J]. Journal of Catalysis, 2008, 257(1): 142-151.
15 Barrault J, Renard C. Selective hydrocondensation of carbon monoxide into light olefins with iron-manganese catalysts[J]. Applied Catalysis, 1985, 14: 133-143.
16 Cuong L T, Dung N D, Tuan T Q, et al. In situ observation of phase transformation in iron carbide nanocrystals[J]. Micron, 2018, 104: 61-65.
17 赵华博, 马丁. χ-Fe5C2: 结构, 合成与催化性质调控[J]. 物理化学学报, 2020, 36(1): 32-41.
Zhao H B, Ma D. χ -Fe5C2: structure, synthesis, and tuning of catalytic properties[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 32-41.
18 Li Y, Li Y P, Shi Q, et al. Novel hollow microspheres Mn x Co3- x O4 (x = 1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3 [J]. Journal of Sol-Gel Science and Technology, 2017, 81(2): 576-585.
19 Tao Z C, Yang Y, Wan H J, et al. Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst[J]. Catalysis Letters, 2007, 114(3/4): 161-168.
20 Song W L, Zhang B, Chen L F, et al. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: the role of the zeolite shell on light-olefin production[J]. Catalysis Science & Technology, 2016, 6(10): 3559-3567.
21 Meng B, Zhao Z B, Chen Y S, et al. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia[J]. Chemical Communications (Cambridge, England), 2014, 50(82): 12396-12399.
22 Larbi T, Amara A, Said L B, et al. A study of optothermal and AC impedance properties of Cr-doped Mn3O4 sprayed thin films[J]. Materials Research Bulletin, 2015, 70: 254-262.
23 Buciuman F, Patcas F, Craciun R, et al. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185-190.
24 Liu S L, Ji J, Yu Y, et al. Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone[J]. Catalysis Science & Technology, 2018, 8(16): 4264-4273.
25 Zuo J, Xu C Y, Liu Y P, et al. Crystallite size effects on the Raman spectra of Mn3O4 [J]. Nanostructured Materials, 1998, 10(8): 1331-1335.
26 Tao Z C, Yang Y, Zhang C H, et al. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Natural Gas Chemistry, 2007, 16(3): 278-285.
27 Shi B F, Zhang Z P, Liu Y T, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. Journal of Catalysis, 2020, 381: 150-162.
28 Han W F, Wang L Y, Li Z, et al. Γ-Fe2O3 as the precursor of iron based catalyst prepared by solid-state reaction at room temperature for Fischer-Tropsch to olefins[J]. Applied Catalysis A: General, 2019, 572: 158-167.
29 Zhang M H, Ren J, Yu Y Z. Insights into the hydrogen coverage effect and the mechanism of Fischer-Tropsch to olefins process on Fe5C2 (510)[J]. ACS Catalysis, 2020, 10(1): 689-701.
30 Herranz T, Rojas S, Pérez-Alonso F J, et al. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. Journal of Catalysis, 2006, 243(1): 199-211.
31 de Smit E, Cinquini F, Beale A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μC [J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941.
32 Zhang Y L, Fu D L, Liu X L, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10(6): 1272-1276.
33 Zhu C, Zhang M W, Huang C, et al. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer-Tropsch synthesis to light olefins[J]. New Journal of Chemistry, 2018, 42(4): 2413-2421.
[1] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[2] 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
[3] 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
[4] 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611.
[5] 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648.
[6] 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572.
[7] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[8] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[9] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[10] 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317.
[11] 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333.
[12] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[13] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[14] 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437.
[15] 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!