化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2677-2689.DOI: 10.11949/0438-1157.20220140
收稿日期:
2022-01-23
修回日期:
2022-03-08
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
韩一帆
作者简介:
孟博(1983—),男,博士研究生,副教授,基金资助:
Bo MENG1(),Yanping LIU1,Xinke JIANG1,Yifan HAN1,2()
Received:
2022-01-23
Revised:
2022-03-08
Online:
2022-06-05
Published:
2022-06-30
Contact:
Yifan HAN
摘要:
催化剂结构调控及反应过程普遍面对多层次多尺度结构的复杂系统,从宏观合成条件到催化剂结构尺度调控,从催化性能到催化剂表面活性位尺度调控,均离不开对催化体系介尺度结构的认识。采用四种方式(低温共沉淀、沉积沉淀、前体混合煅烧及机械混合)制备不同结构Fe-Mn催化剂(Fe与Mn摩尔比为1∶4),探究催化剂结构对其活化历程、铁碳化合物分布以及催化合成气制烯烃性能的影响。结果表明,合成方法对催化剂结构有显著影响,体现在三个方面:活化过程、铁碳化合物尺寸及催化反应性能。发现共沉淀制备的Fe-Mn催化剂显示出较高的CO转化率(20.07%)、烯烷比(2.32)及铁时空收率(4.37×10-5 mol CO?(g Fe)-1?s-1),这主要得益于该催化剂活化后形成的较小的铁碳化合物颗粒尺寸及更多的Fe5C2活性相。
中图分类号:
孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
Bo MENG, Yanping LIU, Xinke JIANG, Yifan HAN. The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas[J]. CIESC Journal, 2022, 73(6): 2677-2689.
催化剂 | 比表面积/(m2?g-1) | 孔容/ (m3?g-1) | 孔径/nm | 平均尺寸/nm |
---|---|---|---|---|
Fe(纯铁) | 91.04 | 0.29 | 8.69 | 65.91 |
GC | 158.61 | 0.33 | 6.03 | 37.83 |
CC-Fe | 120.29 | 0.27 | 6.62 | 49.88 |
CC-Mn | 147.98 | 0.36 | 7.19 | 40.55 |
JH-hd | 124.47 | 0.27 | 6.45 | 48.21 |
JH-dh | 98.76 | 0.30 | 9.19 | 60.76 |
Mn(纯锰) | 102.31 | 0.27 | 7.61 | 58.64 |
表1 Fe-Mn催化剂的织构性质
Table 1 Texture properties of the Fe-Mn catalysts
催化剂 | 比表面积/(m2?g-1) | 孔容/ (m3?g-1) | 孔径/nm | 平均尺寸/nm |
---|---|---|---|---|
Fe(纯铁) | 91.04 | 0.29 | 8.69 | 65.91 |
GC | 158.61 | 0.33 | 6.03 | 37.83 |
CC-Fe | 120.29 | 0.27 | 6.62 | 49.88 |
CC-Mn | 147.98 | 0.36 | 7.19 | 40.55 |
JH-hd | 124.47 | 0.27 | 6.45 | 48.21 |
JH-dh | 98.76 | 0.30 | 9.19 | 60.76 |
Mn(纯锰) | 102.31 | 0.27 | 7.61 | 58.64 |
催化剂 | 晶相含量①/% | ||||
---|---|---|---|---|---|
MnFe2O4 | Fe5C2 | Fe3C | Fe2C | MnO | |
GC | 17.9 | 55.2 | 26.9 | — | — |
CC-Fe | 17.1 | 15.9 | 62.0 | 5.0 | — |
CC-Mn | 31.7 | 20.3 | 31.7 | — | 16.3 |
JH-hd | 20.9 | 9.3 | 69.8 | — | — |
JH-dh | 37.9 | — | 38.6 | — | 23.5 |
表2 不同合成方法Fe-Mn催化剂的晶相含量
Table 2 Crystal phase content of Fe-Mn catalysts prepared by different methods
催化剂 | 晶相含量①/% | ||||
---|---|---|---|---|---|
MnFe2O4 | Fe5C2 | Fe3C | Fe2C | MnO | |
GC | 17.9 | 55.2 | 26.9 | — | — |
CC-Fe | 17.1 | 15.9 | 62.0 | 5.0 | — |
CC-Mn | 31.7 | 20.3 | 31.7 | — | 16.3 |
JH-hd | 20.9 | 9.3 | 69.8 | — | — |
JH-dh | 37.9 | — | 38.6 | — | 23.5 |
催化剂 | 晶粒尺寸①/nm | |
---|---|---|
Fe5C2 | Fe3C | |
GC | 19.69 | 28.44 |
CC-Fe | 20.80 | 16.82 |
CC-Mn | 26.68 | 27.12 |
JH-hd | 27.14 | 21.68 |
JH-dh | — | 26.79 |
表3 不同合成方法Fe-Mn催化剂的晶粒尺寸
Table 3 Grain sizes of Fe-Mn catalysts prepared by different methods
催化剂 | 晶粒尺寸①/nm | |
---|---|---|
Fe5C2 | Fe3C | |
GC | 19.69 | 28.44 |
CC-Fe | 20.80 | 16.82 |
CC-Mn | 26.68 | 27.12 |
JH-hd | 27.14 | 21.68 |
JH-dh | — | 26.79 |
催化剂 | CO conversion/% | FTY① | CO2 selectivity/% | Hydrocarbon distribution②/% | α | O/P③ | |||
---|---|---|---|---|---|---|---|---|---|
CH4 | C5+ | ||||||||
GC | 20.07 | 4.37 | 6.37 | 13.28 | 17.45 | 38.60 | 24.29 | 0.54 | 2.32 |
CC-Fe | 15.49 | 2.77 | 22.97 | 17.55 | 14.48 | 20.11 | 19.71 | 0.71 | 1.47 |
CC-Mn | 14.36 | 2.23 | 33.08 | 9.49 | 14.19 | 27.95 | 15.28 | 0.53 | 2.25 |
JH-hd | 8.41 | 1.55 | 20.84 | 26.13 | 13.44 | 23.62 | 15.97 | 0.58 | 1.99 |
JH-dh | 4.63 | 0.89 | 17.23 | 21.56 | 14.14 | 26.08 | 20.98 | 0.55 | 2.04 |
表4 不同合成方法Fe-Mn催化剂的STO性能数据汇总
Table 4 Summary of STO performance for Fe-Mn catalysts prepared by different methods
催化剂 | CO conversion/% | FTY① | CO2 selectivity/% | Hydrocarbon distribution②/% | α | O/P③ | |||
---|---|---|---|---|---|---|---|---|---|
CH4 | C5+ | ||||||||
GC | 20.07 | 4.37 | 6.37 | 13.28 | 17.45 | 38.60 | 24.29 | 0.54 | 2.32 |
CC-Fe | 15.49 | 2.77 | 22.97 | 17.55 | 14.48 | 20.11 | 19.71 | 0.71 | 1.47 |
CC-Mn | 14.36 | 2.23 | 33.08 | 9.49 | 14.19 | 27.95 | 15.28 | 0.53 | 2.25 |
JH-hd | 8.41 | 1.55 | 20.84 | 26.13 | 13.44 | 23.62 | 15.97 | 0.58 | 1.99 |
JH-dh | 4.63 | 0.89 | 17.23 | 21.56 | 14.14 | 26.08 | 20.98 | 0.55 | 2.04 |
1 | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度: 复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
2 | 程道建. 双金属纳米催化剂介尺度结构:理论和实验研究[C]// 2015年中国化工学会年会. 2015: 2193. |
Cheng D J. Mesoscale structure of bimetallic nanocatalysts: theoretical and experimental studies[C]// 2015 CIESC Annual Meeting. 2015: 2193. | |
3 | Li H, Zeng X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets[J]. ACS Nano, 2012, 6(3): 2401-2409. |
4 | Zhu C Q, Li H, Huang Y F, et al. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant[J]. Physical Review Letters, 2013, 110(12): 126101. |
5 | Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
6 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro- /nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
7 | Rofer-Depoorter C K. A comprehensive mechanism for the Fischer-Tropsch synthesis[J]. Chemical Reviews, 1981, 81(5): 447-474. |
8 | Iglesia E, Soled S L, Fiato R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. Journal of Catalysis, 1992, 137(1): 212-224. |
9 | Carballo J M G, Finocchio E, García-Rodriguez S, et al. Insights into the deactivation and reactivation of Ru/TiO2 during Fischer-Tropsch synthesis[J]. Catalysis Today, 2013, 214: 2-11. |
10 | Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem.Rev., 2007, 107(5): 1692-1744. |
11 | 董子超, 吴玉, 张博风, 等. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656. |
Dong Z C, Wu Y, Zhang B F, et al. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656. | |
12 | 夏明, 李江兵. 费托合成制低碳烯烃铁基催化剂研究进展[J]. 化工技术与开发, 2012, 41(2): 18-23. |
Xia M, Li J B. Research advances in making light olefins for iron-based Fischer-Tropsch synthesis catalysts[J]. Technology & Development of Chemical Industry, 2012, 41(2): 18-23. | |
13 | Zhang Q H, Kang J C, Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058. |
14 | Lohitharn N, Goodwin J G. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: investigation at the active site level using SSITKA[J]. Journal of Catalysis, 2008, 257(1): 142-151. |
15 | Barrault J, Renard C. Selective hydrocondensation of carbon monoxide into light olefins with iron-manganese catalysts[J]. Applied Catalysis, 1985, 14: 133-143. |
16 | Cuong L T, Dung N D, Tuan T Q, et al. In situ observation of phase transformation in iron carbide nanocrystals[J]. Micron, 2018, 104: 61-65. |
17 | 赵华博, 马丁. χ-Fe5C2: 结构, 合成与催化性质调控[J]. 物理化学学报, 2020, 36(1): 32-41. |
Zhao H B, Ma D. χ -Fe5C2: structure, synthesis, and tuning of catalytic properties[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 32-41. | |
18 | Li Y, Li Y P, Shi Q, et al. Novel hollow microspheres Mn x Co3- x O4 (x = 1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3 [J]. Journal of Sol-Gel Science and Technology, 2017, 81(2): 576-585. |
19 | Tao Z C, Yang Y, Wan H J, et al. Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst[J]. Catalysis Letters, 2007, 114(3/4): 161-168. |
20 | Song W L, Zhang B, Chen L F, et al. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: the role of the zeolite shell on light-olefin production[J]. Catalysis Science & Technology, 2016, 6(10): 3559-3567. |
21 | Meng B, Zhao Z B, Chen Y S, et al. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia[J]. Chemical Communications (Cambridge, England), 2014, 50(82): 12396-12399. |
22 | Larbi T, Amara A, Said L B, et al. A study of optothermal and AC impedance properties of Cr-doped Mn3O4 sprayed thin films[J]. Materials Research Bulletin, 2015, 70: 254-262. |
23 | Buciuman F, Patcas F, Craciun R, et al. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185-190. |
24 | Liu S L, Ji J, Yu Y, et al. Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone[J]. Catalysis Science & Technology, 2018, 8(16): 4264-4273. |
25 | Zuo J, Xu C Y, Liu Y P, et al. Crystallite size effects on the Raman spectra of Mn3O4 [J]. Nanostructured Materials, 1998, 10(8): 1331-1335. |
26 | Tao Z C, Yang Y, Zhang C H, et al. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Natural Gas Chemistry, 2007, 16(3): 278-285. |
27 | Shi B F, Zhang Z P, Liu Y T, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. Journal of Catalysis, 2020, 381: 150-162. |
28 | Han W F, Wang L Y, Li Z, et al. Γ-Fe2O3 as the precursor of iron based catalyst prepared by solid-state reaction at room temperature for Fischer-Tropsch to olefins[J]. Applied Catalysis A: General, 2019, 572: 158-167. |
29 | Zhang M H, Ren J, Yu Y Z. Insights into the hydrogen coverage effect and the mechanism of Fischer-Tropsch to olefins process on Fe5C2 (510)[J]. ACS Catalysis, 2020, 10(1): 689-701. |
30 | Herranz T, Rojas S, Pérez-Alonso F J, et al. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. Journal of Catalysis, 2006, 243(1): 199-211. |
31 | de Smit E, Cinquini F, Beale A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μC [J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
32 | Zhang Y L, Fu D L, Liu X L, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10(6): 1272-1276. |
33 | Zhu C, Zhang M W, Huang C, et al. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer-Tropsch synthesis to light olefins[J]. New Journal of Chemistry, 2018, 42(4): 2413-2421. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[13] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[14] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||