化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2908-2918.DOI: 10.11949/0438-1157.20230420
收稿日期:
2023-04-26
修回日期:
2023-06-26
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
王丽
作者简介:
李盼(1998—),女,硕士研究生,lipan0405@163.com
基金资助:
Pan LI(), Junyang MA, Zhihao CHEN, Li WANG(), Yun GUO
Received:
2023-04-26
Revised:
2023-06-26
Online:
2023-07-05
Published:
2023-08-31
Contact:
Li WANG
摘要:
以具有不同形貌的线状(w)、管状(t)和棒状(r)的α-MnO2为载体制备了Ru/α-MnO2催化剂,考察了载体形貌对于氨选择性催化氧化(NH3-SCO)反应性能的影响,并利用多种手段表征了催化剂的物化性质、氧化还原性能和酸性。α-MnO2形貌影响所暴露的晶面;线状、纳米棒和管状α-MnO2分别暴露(110)、(310)和(200)晶面。Ru的引入提高了催化剂的耐水性能,其中管状Ru/α-MnO2在水汽条件下NH3转化率为86%,N2的选择性为98%。Ru的引入对反应性能的影响与其对α-MnO2表面酸性、氧化还原性能的影响密切相关。Ru降低了α-MnO2-w表面酸量导致其活性下降;Ru对于α-MnO2-r氧化性能的提高弥补了其导致的表面酸量的降低;而Ru对α-MnO2-t氧化性和酸量的同时促进是Ru/α-MnO2-t反应性能提升的主要原因。
中图分类号:
李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918.
Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance[J]. CIESC Journal, 2023, 74(7): 2908-2918.
催化剂 | Ru负载量①/% | 比表面积②/(m2/g) | 反应速率③/(107 mol/(g·s)) | 活化能④/(kJ/mol) |
---|---|---|---|---|
α-MnO2-w | — | 139 | 3.7 | 31.3 |
Ru/α-MnO2-w | 1.84 | 133 | 2.4 | 45.9 |
α-MnO2-t | — | 26 | 2.6 | 43.4 |
Ru/α-MnO2-t | 1.79 | 24 | 3.2 | 35.7 |
α-MnO2-r | — | 70 | 1.5 | 46.6 |
Ru/α-MnO2-r | 1.90 | 65 | 2.7 | 42.8 |
表1 α-MnO2和Ru/α-MnO2的物化表征及动力学结果
Table 1 The textural properties of α-MnO2 and Ru/α-MnO2
催化剂 | Ru负载量①/% | 比表面积②/(m2/g) | 反应速率③/(107 mol/(g·s)) | 活化能④/(kJ/mol) |
---|---|---|---|---|
α-MnO2-w | — | 139 | 3.7 | 31.3 |
Ru/α-MnO2-w | 1.84 | 133 | 2.4 | 45.9 |
α-MnO2-t | — | 26 | 2.6 | 43.4 |
Ru/α-MnO2-t | 1.79 | 24 | 3.2 | 35.7 |
α-MnO2-r | — | 70 | 1.5 | 46.6 |
Ru/α-MnO2-r | 1.90 | 65 | 2.7 | 42.8 |
催化剂 | Ru4+/Ru① | Mn3+/Mn4+① | Oβ/Oα① | 表面平均氧化态② | 实际耗氢量③/(mmol/g) | 相对酸浓度④ |
---|---|---|---|---|---|---|
α-MnO2-w | — | 1.93 | 0.24 | 3.51 | 8.57 | 2.9 |
Ru/α-MnO2-w | 0.64 | 1.81 | 0.21 | 3.35 | 8.51 | 0.1 |
α-MnO2-t | — | 1.78 | 0.22 | 3.68 | 9.77 | 0.4 |
Ru/α-MnO2-t | 0.65 | 1.86 | 0.24 | 3.33 | 9.83 | 1 |
α-MnO2-r | — | 1.71 | 0.20 | 3.72 | 9.83 | 2.2 |
Ru/α-MnO2-r | 0.61 | 1.83 | 0.23 | 3.58 | 10.41 | 0.9 |
表2 α-MnO2和Ru/α-MnO2的XPS数据、耗氢量及相对酸量
Table 2 XPS data, H2 consumption and relative acidity of α-MnO2 and Ru/α-MnO2
催化剂 | Ru4+/Ru① | Mn3+/Mn4+① | Oβ/Oα① | 表面平均氧化态② | 实际耗氢量③/(mmol/g) | 相对酸浓度④ |
---|---|---|---|---|---|---|
α-MnO2-w | — | 1.93 | 0.24 | 3.51 | 8.57 | 2.9 |
Ru/α-MnO2-w | 0.64 | 1.81 | 0.21 | 3.35 | 8.51 | 0.1 |
α-MnO2-t | — | 1.78 | 0.22 | 3.68 | 9.77 | 0.4 |
Ru/α-MnO2-t | 0.65 | 1.86 | 0.24 | 3.33 | 9.83 | 1 |
α-MnO2-r | — | 1.71 | 0.20 | 3.72 | 9.83 | 2.2 |
Ru/α-MnO2-r | 0.61 | 1.83 | 0.23 | 3.58 | 10.41 | 0.9 |
1 | Chen Z, Bian C, Guo Y B, et al. Efficient strategy to regenerate phosphorus-poisoned Cu-SSZ-13 catalysts for the NH3-SCR of NO x : the deactivation and promotion mechanism of phosphorus[J]. ACS Catalysis, 2021, 11(21): 12963-12976. |
2 | Shao X Z, Wang H Y, Yuan M L, et al. Thermal stability of Si-doped V2O5/WO3-TiO2 for selective catalytic reduction of NO x by NH3 [J]. Rare Metals, 2019, 38: 292-298. |
3 | Oravisjärvi K, Timonen K L, Wiikinkoski T, et al. Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works[J]. Atmospheric Environment, 2003, 37(8): 1013-1022. |
4 | Wang H F, Murayama T, Lin M Y, et al. Understanding the distinct effects of Ag nanoparticles and highly dispersed Ag species on N2 selectivity in NH3-SCO reaction[J]. ACS Catalysis, 2022, 12(10): 6108-6118. |
5 | Wu P, Zhao S Q, Yu J W, et al. Effect of absorbed sulfate poisoning on the performance of catalytic oxidation of VOCs over MnO2 [J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50566-50572. |
6 | Yan G B, Lian Y B, Gu Y D, et al. Phase and morphology transformation of MnO2 induced by ionic liquids toward efficient water oxidation[J]. ACS Catalysis, 2018, 8(11): 10137-10147. |
7 | Zhang J, Cao Y D, Wang C G, et al. Design and preparation of MnO2/CeO2-MnO2 double-shelled binary oxide hollow spheres and their application in CO oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8670-8677. |
8 | Wang F, Dai H X, Deng J G, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7): 4034-4041. |
9 | 李治东, 万佳琪, 刘莹, 等. 一步法合成α-MnO2/β-MnO2催化剂及其对甲苯催化氧化的性能研究[J]. 化工学报, 2022, 73(8): 3615-3624. |
Li Z D, Wan J Q, Liu Y, et al. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene[J]. CIESC Journal, 2022, 73(8): 3615-3624. | |
10 | 马俊洋, 刘丹丹, 王丽, 等. 不同晶相MnO2催化剂的NH3-SCO反应性能[J]. 稀有金属, 2021, 45(2): 177-186. |
Ma J Y, Liu D D, Wang L, et al. NH3-SCO reaction performance of different crystal phase MnO2 catalysts[J]. Chinese Journal of Rare Metals, 2021, 45(2): 177-186. | |
11 | Jiang H X, Wang Y D, Zhou J L, et al. Morphology control of manganese-based catalysts for low-temperature selective catalytic reduction of NO x [J]. Materials Letters, 2018, 233: 250-253. |
12 | Rong S P, Zhang P Y, Liu F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8(4): 3435-3446. |
13 | Wang H, Xu D Y, Guan E J, et al. Atomically dispersed Ru on manganese oxide catalyst boosts oxidative cyanation[J]. ACS Catalysis, 2020, 10(11): 6299-6308. |
14 | Qin Y Z, Liu Y, Zhang Y Z, et al. Ru-substituted MnO2 for accelerated water oxidation: the feedback of strain-induced and polymorph-dependent structural changes to the catalytic activity and mechanism[J]. ACS Catalysis, 2023, 13(1): 256-266. |
15 | Lin C, Li J L, Li X P, et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nature Catalysis, 2021, 4(12): 1012-1023. |
16 | Liu Y, Gu C S, Chen L G, et al. Ru-MnO x interaction for efficient hydrodeoxygenation of levulinic acid and its derivatives[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 4184-4193. |
17 | Duan X X, Zhao T, Niu B, et al. Simultaneously constructing active sites and regulating Mn—O strength of Ru-substituted perovskite for efficient oxidation and hydrolysis oxidation of chlorobenzene[J]. Advanced Science, 2023, 10(3): 2205054. |
18 | Xiao W, Xia H, Fuh J Y H, et al. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties[J]. Journal of Power Sources, 2009, 193(2): 935-938. |
19 | Wang C, Sun L, Cao Q Q, et al. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 598-605. |
20 | Wu Y S, Li S, Cao Y, et al. Facile synthesis of mesoporous α-MnO2 nanorod with three-dimensional frameworks and its enhanced catalytic activity for VOCs removal[J]. Materials Letters, 2013, 97: 1-3. |
21 | Wang H M, Ning P, Zhang Q L, et al. Effect of different RuO2 contents on selective catalytic oxidation of ammonia over RuO2-Fe2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 215-223. |
22 | Sithambaram S, Nyutu E K, Suib S L. OMS-2 catalyzed oxidation of tetralin: a comparative study of microwave and conventional heating under open vessel conditions[J]. Applied Catalysis A: General, 2008, 348(2): 214-220. |
23 | Zhu C R, Yang L, Seo J K, et al. Self-branched α-MnO2/δ-MnO2 heterojunction nanowires with enhanced pseudocapacitance[J]. Materials Horizons, 2017, 4(3): 415-422. |
24 | Zhu L, Xu H X, Nan Y, et al. The synergistic effect between crystal planes and promoters on Ag-catalyzed ethylene epoxidation[J]. Applied Surface Science, 2019, 476: 115-122. |
25 | Kapteijn F, Vanlangeveld A D, Moulijn J A, et al. Alumina-supported manganese oxide catalysts[J]. Journal of Catalysis, 1994, 150(1): 94-104. |
26 | Hou J T, Liu L L, Li Y Z, et al. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation[J]. Environmental Science & Technology, 2013, 47(23): 13730-13736. |
27 | Hou J T, Li Y Z, Liu L L, et al. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods[J]. Journal of Materials Chemistry A, 2013, 1(23): 6736-6741. |
28 | Jia J B, Zhang P Y, Chen L. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone[J]. Catalysis Science & Technology, 2016, 6(15): 5841-5847. |
29 | Kang B, Jin X Y, Oh S M, et al. An effective way to improve bifunctional electrocatalyst activity of manganese oxide via control of bond competition[J]. Applied Catalysis B: Environmental, 2018, 236: 107-116. |
30 | Dai Y, Wang X Y, Dai Q G, et al. Effect of Ce and La on the structure and activity of MnO x catalyst in catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2012, 111/112: 141-149. |
31 | Lee S M, Lee H H, Hong S C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2 [J]. Applied Catalysis A: General, 2014, 470: 189-198. |
32 | Wang C, Zhang C H, Hua W C, et al. Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co3O4 catalysts[J]. RSC Advances, 2016, 6(101): 99577-99585. |
33 | Wang X, Xie Y C. The promotion effects of Ba on manganese oxide for CH4 deep oxidation[J]. Catalysis Letters, 2001, 72(1): 51-57. |
34 | Gong P J, Xie J L, Fang D, et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J]. Chinese Journal of Catalysis, 2017, 38(11): 1925-1934. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 236
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||