化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2552-2562.doi: 10.11949/0438-1157.20220087

• 流体力学与传递现象 • 上一篇    下一篇

超声微反应器内气液传质过程的介尺度强化机制

许非石(),杨丽霞,陈光文()   

  1. 中国科学院大连化学物理研究所,辽宁 大连 116023
  • 收稿日期:2022-01-17 修回日期:2022-02-11 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 陈光文 E-mail:xufeishi@dicp.ac.cn;gwchen@dicp.ac.cn
  • 作者简介:许非石(1990—),男,博士后,xufeishi@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(92034303);中国博士后科学基金项目(2019M661145)

Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor

Feishi XU(),Lixia YANG,Guangwen CHEN()   

  1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2022-01-17 Revised:2022-02-11 Published:2022-06-05 Online:2022-06-30
  • Contact: Guangwen CHEN E-mail:xufeishi@dicp.ac.cn;gwchen@dicp.ac.cn

摘要:

采用CFD方法对超声微反应器内的Taylor气液两相流的传质过程进行了模拟。针对传质过程中主要的介尺度结构,包括气泡表面波、空化声流、液相内的局部浓度,分析了其空间分布和时间演化规律。模拟结果有效捕捉了实验难以观测的液膜区域,并将液膜厚度与气泡表面波振动进行了关联,阐释了气液界面附近的空化声流对传质过程的强化作用。根据超声微反应器内Taylor流的传质特点,分别研究了不同流动和超声条件对液弹内和液膜处传质过程的影响,比较了各局部传质对整体传质效率的贡献。通过分析整体/局部Sherwood数与Peclet数间的关系,研究了超声效应对气液传质速率的影响。分析结果从介尺度角度验证了文献关于超声微反应器传质系数的计算,完善了超声微反应器内气液传质过程的强化理论。

关键词: 微通道, 微反应器, 超声, 声空化, 气泡, 传质

Abstract:

The mass transfer processes of the gas-liquid two-phase Taylor flow in the ultrasonic microreactor were simulated by CFD method. The spatial distribution and time evolution of the mesoscale structures including surface waves, acoustic streaming and local concentration were analyzed. The simulation results effectively captured the liquid film region and correlated the liquid film thickness with the surface wave vibration. The formation of acoustic streaming near the gas-liquid interface was also discussed. According to the mass transfer characteristics of ultrasonic Taylor flow, the effects of different flow and ultrasonic conditions on the mass transfer process at the liquid slug and film were investigated separately, and the contribution of each local part on the overall mass transfer efficiency was compared. The relationship between the overall and local Sh-Pe was analyzed to discuss the characterization method of the gas-liquid mass transfer rate under ultrasonic conditions. The analysis results verify the calculation of the mass transfer coefficient of the ultrasonic microreactor from the perspective of mesoscale, and improve the theory of strengthening the gas-liquid mass transfer process in the ultrasonic microreactor.

Key words: microchannel, microreactor, ultrasonics, acoustic cavitation, bubble, mass transfer

中图分类号: 

  • TK 124

图1

超声微反应器结构及模拟单元"

表1

模拟采用的物性参数"

参数液相气相
二氧化碳
密度ρ/(kg/m3)998.21.7878
黏度 μ/(mPa·s)1.0030.0137
摩尔质量 /(kg/mol)18.015244.00995
表面张力系数σ/(N/m)0.072
饱和浓度 /(kg/m3)1.688
液相扩散系数 /(m2/s)2×10-9

表2

网格独立测试中的网格单元的大小和分布"

项目轴向3000 μm径向总数
中心区域200 μm过渡区域45 μm壁面区域5 μm
尺寸/μm数量尺寸/μm数量尺寸/μm数量尺寸/μm数量
Mesh 120150201010~1.349157200
Mesh 210300102010~1.3491520400
Mesh 356005404.8~1.3161573200
Mesh 42.512002.5802.5~1.22515264000

图2

网格无关性验证与传质算法验证"

图3

液膜结构示意图和模拟结果"

图4

不同超声振幅下稳态和动态液膜区域厚度随Ca的变化"

图5

界面附近空化声流模拟结果"

图6

不同振动幅度下液弹中流场分布和溶质浓度分布随时间的演变"

图7

无超声和有超声条件下液膜处溶质浓度分布"

图8

不同振幅下液膜处传质通量与液弹(气泡头部)通量比值随时间的变化"

图9

不同流动和超声条件下Sh随时间的演变(no US: AUS = 0 μm; US: AUS = 5 μm)"

图10

液膜处Sh-Pe关系"

图11

液弹(气泡头部)处Sh-Pe关系"

1 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281.
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, 44(3): 277-281.
2 Huang W L, Li J H, Edwards P P. Mesoscience: exploring the common principle at mesoscales[J]. National Science Review, 2017, 5(3): 321-326.
3 Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017.
4 Jensen K F. Microreaction engineering—is small better? [J]. Chemical Engineering Science, 2001, 56(2): 293-303.
5 Dong Z Y, Delacour C, Mc Carogher K, et al. Continuous ultrasonic reactors: design, mechanism and application[J]. Materials, 2020, 13(2): 344.
6 Friend J, Yeo L Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics[J]. Reviews of Modern Physics, 2011, 83(2): 647-704.
7 Zhao S N, Yao C Q, Dong Z Y, et al. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue[J]. Particuology, 2020, 48: 88-99.
8 Butler C, Cid E, Billet A M. Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique[J]. Chemical Engineering Research and Design, 2016, 115: 292-302.
9 Xu F S, Hébrard G, Dietrich N. Comparison of three different techniques for gas-liquid mass transfer visualization[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119261.
10 Yang L X, Loubière K, Dietrich N, et al. Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel[J]. Chemical Engineering Science, 2017, 165: 192-203.
11 Hagsäter S M, Jensen T G, Bruus H, et al. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations[J]. Lab on a Chip, 2007, 7(10): 1336-1344.
12 Xu F S, Jimenez M, Dietrich N, et al. Fast determination of gas-liquid diffusion coefficient by an innovative double approach[J]. Chemical Engineering Science, 2017, 170: 68-76.
13 王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735.
Wang B J, Li H, Yang X Y, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735.
14 Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886.
15 Hoang D A, van Steijn V, Portela L M, et al. Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method[J]. Computers & Fluids, 2013, 86: 28-36.
16 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644.
Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644.
17 Yao C Q, Liu Y Y, Xu C, et al. Formation of liquid-liquid slug flow in a microfluidic T-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2018, 64(1): 346-357.
18 Talimi V, Muzychka Y S, Kocabiyik S. A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels[J]. International Journal of Multiphase Flow, 2012, 39: 88-104.
19 Dong Z Y, Yao C Q, Zhang Y C, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[J]. AIChE Journal, 2016, 62(4): 1294-1307.
20 Zhang Q, Dong Z Y, Zhao S N, et al. Ultrasound-assisted gas-liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency[J]. Chemical Engineering Journal, 2021, 405: 126720.
21 Xu F S, Yang L X, Liu Z K, et al. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors[J]. Chemical Engineering Science, 2021, 235: 116477.
22 Yang L X, Xu F S, Chen G W. Enhancement of gas-liquid mass transfer and mixing in zigzag microreactor under ultrasonic oscillation[J]. Chemical Engineering Science, 2022, 247: 117094.
23 Yang L X, Xu F S, Zhang Q, et al. Gas-liquid hydrodynamics and mass transfer in microreactors under ultrasonic oscillation[J]. Chemical Engineering Journal, 2020, 397: 125411.
24 Butler C, Cid E, Billet A M, et al. Numerical simulation of mass transfer dynamics in Taylor flows[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121670.
25 Yang L, Nieves-Remacha M J, Jensen K F. Simulations and analysis of multiphase transport and reaction in segmented flow microreactors[J]. Chemical Engineering Science, 2017, 169: 106-116.
26 Silva M F, Campos J B L M, Miranda J M, et al. Numerical study of single Taylor bubble movement through a microchannel using different CFD packages[J]. Processes, 2020, 8(11): 1418.
27 Özkan F, Wenka A, Hansjosten E, et al. Numerical investigation of interfacial mass transfer in two phase flows using the VOF method[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 100-110.
28 Soh G Y, Yeoh G H, Timchenko V. A CFD model for the coupling of multiphase, multicomponent and mass transfer physics for micro-scale simulations[J]. International Journal of Heat and Mass Transfer, 2017, 113: 922-934.
29 Gupta R, Fletcher D F, Haynes B S. On the CFD modelling of Taylor flow in microchannels[J]. Chemical Engineering Science, 2009, 64(12): 2941-2950.
30 Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367-2371.
31 Maksimov A, Leighton T, Birkin P. Acoustic microstreaming induced by pattern of Faraday waves on a bubble wall[J]. The Journal of the Acoustical Society of America, 2012, 131(4): 3338.
32 Yao C Q, Dong Z Y, Zhang Y C, et al. On the leakage flow around gas bubbles in slug flow in a microchannel[J]. AIChE Journal, 2015, 61(11): 3964-3972.
33 Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of the AIChE, 1935, 31: 365-389.
34 Figueroa-Espinoza B, Legendre D. Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid[J]. Chemical Engineering Science, 2010, 65(23): 6296-6309.
[1] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[2] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[3] 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702.
[4] 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518.
[5] 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246.
[6] 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351.
[7] 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293.
[8] 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081.
[9] 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783.
[10] 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524.
[11] 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755.
[12] 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706.
[13] 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558.
[14] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[15] 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!