化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4438-4447.DOI: 10.11949/0438-1157.20220798
收稿日期:
2022-06-10
修回日期:
2022-09-02
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
蒋新
作者简介:
方凯伦(1997—),男,硕士研究生, 22028158@zju.edu.cn
基金资助:
Kailun FANG(), Shuaishuai CHEN, Jiawei FU, Xin JIANG(
)
Received:
2022-06-10
Revised:
2022-09-02
Online:
2022-10-05
Published:
2022-11-02
Contact:
Xin JIANG
摘要:
陈化过程是共沉淀法制备Cu-Mn复合催化剂的关键步骤,沉淀物在形成初期快速的结构变化过程是研究的难点和盲点。采用微反应器制备Cu-Mn催化剂,并利用延长管进行陈化以研究极短陈化时间对Cu-Mn沉淀物及催化剂结构的影响,采用高倍电镜(HRTEM)、X射线衍射(XRD)、热重分析(TG)、拉曼光谱(Raman spectra)、X射线光电子能谱(XPS)对不同陈化时间的沉淀物和催化剂的理化性质进行分析。结果显示,在陈化过程中沉淀物中的MnCO3在数分钟内快速完成了从无定形到结晶态的转变,而Cu2+进入结晶态MnCO3结构的过程需要数十分钟才能完成。结晶态MnCO3的形成使Cu和Mn相互分离,而Cu-Mn复合碳酸盐的形成使得Cu-Mn分散性又逐渐变好。这导致了催化剂的结构参数呈现规律变化,使催化剂性能随陈化时间呈现先迅速变差后缓慢变好的规律。
中图分类号:
方凯伦, 陈帅帅, 付家崴, 蒋新. 微反应器研究陈化过程对铜锰催化剂的影响[J]. 化工学报, 2022, 73(10): 4438-4447.
Kailun FANG, Shuaishuai CHEN, Jiawei FU, Xin JIANG. Effect of aging process on copper manganese composite catalyst[J]. CIESC Journal, 2022, 73(10): 4438-4447.
1 | Lyu Y, Li C T, Du X Y, et al. Catalytic removal of toluene over manganese oxide-based catalysts: a review[J]. Environmental Science and Pollution Research International, 2020, 27(3): 2482-2501. |
2 | Ye Z, Giraudon J M, Nuns N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 154-166. |
3 | Porta P, Moretti G, Jacono M L, et al. Characterization of copper-manganese hydroxysalts and oxysalts[J]. J. Mater. Chem., 1991, 1(1): 129-135. |
4 | Güldenpfennig A, Distaso M, Peukert W. In situ investigations on the amorphous to crystalline phase transformation of precursors for methanol synthesis catalysts[J]. Chemical Engineering Journal, 2019, 369: 996-1004. |
5 | Liu Y, Jia L, Lin Y, et al. Catalytic combustion of toluene over Cu–Mn mixed oxide catalyst[J]. Journal of Chemical Engineering of Japan, 2018, 51(9):769-777. |
6 | Mirzaei A A, Shaterian H R, Habibi M, et al. Characterisation of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalysts[J]. Applied Catalysis A: General, 2003, 253(2): 499-508. |
7 | Hutchings G J, Mirzaei A A, Joyner R W, et al. Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by coprecipitation: effect of ageing on catalyst performance[J]. Catalysis Letters, 1996, 42(1/2): 21-24. |
8 | Tanimu A, Jaenicke S, Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications[J]. Chemical Engineering Journal, 2017, 327: 792-821. |
9 | Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al. A review on microreactors: reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 2018, 189: 431-448. |
10 | Einaga H, Kiya A. Effect of aging on the CO oxidation properties of copper manganese oxides prepared by hydrolysis–coprecipitation using tetramethyl ammonium hydroxide[J]. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117(2): 521-536. |
11 | Clarke T J, Kondrat S A, Taylor S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catalysis Today, 2015, 258: 610-615. |
12 | Clarke T J, Davies T E, Kondrat S A, et al. Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide[J]. Applied Catalysis B: Environmental, 2015, 165: 222-231. |
13 | 席世川. 激光拉曼光谱技术在南海裸露自生碳酸盐岩的原位和实验室分析中的应用[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2018. |
Xi S C. Laser Raman spectroscopy application of exposed authigenic carbonates in the South China Sea for in situ detection and the analyses in laboratory[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2018. | |
14 | Frost R L, Xi Y F, Scholz R, et al. Infrared and Raman spectroscopic characterization of the carbonate mineral weloganite-Sr3Na2Zr(CO3)6·3H2O and in comparison with selected carbonates[J]. Journal of Molecular Structure, 2013, 1039: 101-106. |
15 | 刘欣蕊, 李林, 杨自强, 等. 羟基碳酸钐中羟基位置及振动方式研究[J]. 光谱学与光谱分析, 2019, 39(12): 3686-3691. |
Liu X R, Li L, Yang Z Q, et al. Study on the position and vibrational mode of hydroxyl groups in samarium hydroxycarbonate[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3686-3691. | |
16 | Behrens M, Schlögl R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2013, 639(15): 2683-2695. |
17 | Ahn C W, You Y W, Heo I, et al. Catalytic combustion of volatile organic compound over spherical-shaped copper-manganese oxide[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 439-445. |
18 | Grygar T, Rojka T, Bezdička P, et al. Voltammetric and X-ray diffraction analysis of the early stages of the thermal crystallization of mixed Cu, Mn oxides[J]. Journal of Solid State Electrochemistry, 2004, 8(4): 252-259. |
19 | Huang N, Qu Z P, Dong C, et al. Superior performance of α@β-MnO2 for the toluene oxidation: active interface and oxygen vacancy[J]. Applied Catalysis A: General, 2018, 560: 195-205. |
20 | Wei G C, Zhang Q L, Zhang D H, et al. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: the mechanism study[J]. Applied Surface Science, 2019, 497: 143777. |
21 | Ferrandon M, Carnö J, Järås S, et al. Total oxidation catalysts based on manganese or copper oxides and platinum or palladium (Ⅰ): Characterisation[J]. Applied Catalysis A: General, 1999, 180(1/2): 141-151. |
22 | Wang H P, Lu Y Y, Han Y X, et al. Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu-O-Mn/γ-Al2O3 catalysts[J]. Applied Surface Science, 2017, 420: 260-266. |
23 | Li D, Yu Q, Li S S, et al. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2011, 17(20): 5668-5679. |
24 | 陈帅帅, 陈鑫超, 凌晨, 等. 沉淀过程对锰孔雀石结构及其演化过程的影响[J]. 化工进展, 2020, 39(5): 1707-1713. |
Chen S S, Chen X C, Ling C, et al. Influence of the precipitation process on the structure and evolution of manganese malachite[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1707-1713. | |
25 | Chen S H, Li H, Hao Y, et al. Porous Mn-based oxides for complete ethanol and toluene catalytic oxidation: the relationship between structure and performance[J]. Catalysis Science & Technology, 2020, 10(6): 1941-1951. |
26 | Wang Y, Yang D Y, Li S Z, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chemical Engineering Journal, 2019, 357: 258-268. |
27 | Wang P, He Y, Yang Z Q, et al. Experimental study of benzene catalytic combustion over Cu-Mn-Ce/Al2O3 particles[J]. ChemistrySelect, 2020, 5(3): 1122-1129. |
28 | Lee H J, Yang J H, You J H, et al. Sea-urchin-like mesoporous copper-manganese oxide catalysts: influence of copper on benzene oxidation[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 156-165. |
29 | Cao H Y, Li X S, Chen Y Q, et al. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene[J]. Journal of Rare Earths, 2012, 30(9): 871-877. |
30 | Liu Y X, Dai H X, Deng J G, et al. In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnO x /3DOM LaMnO3 for the combustion of toluene and methanol[J]. Applied Catalysis B: Environmental, 2013, 140/141: 493-505. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[15] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 405
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||