化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5177-5185.DOI: 10.11949/0438-1157.20220948
厉劲风1(), 方凯1, 许好好1, 李鑫坤2, 谢军龙2, 陈建业2()
收稿日期:
2022-07-05
修回日期:
2022-08-11
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
陈建业
作者简介:
厉劲风(1991—),博士,工程师,jingfeng_lee@126.com
基金资助:
Jinfeng LI1(), Kai FANG1, Haohao XU1, Xinkun LI2, Junlong XIE2, Jianye CHEN2()
Received:
2022-07-05
Revised:
2022-08-11
Online:
2022-11-05
Published:
2022-12-06
Contact:
Jianye CHEN
摘要:
建立了大空间液氢射流泄漏三维非稳态CFD数值计算模型,开展了泄漏扩散规律研究。并对比研究了静风与顺风条件下,液氢射流泄漏所产生氢气云团的运动特性,使用无量纲数对同一时刻流场中不同位置的氢气云团行为进行了分析。结果表明,液氢射流泄漏过程包括自由出流、相变沉降、气云上升和稳定四个阶段。射流体具有较大水平速度时,由于惯性力的作用更显著,浮升力的作用难以体现,氢气云团会贴地运动更长的距离,这也增大了泄漏事故的危害性。
中图分类号:
厉劲风, 方凯, 许好好, 李鑫坤, 谢军龙, 陈建业. 大空间液氢射流泄漏扩散特性[J]. 化工学报, 2022, 73(11): 5177-5185.
Jinfeng LI, Kai FANG, Haohao XU, Xinkun LI, Junlong XIE, Jianye CHEN. Diffusion features of jet leakage with liquid hydrogen in large space[J]. CIESC Journal, 2022, 73(11): 5177-5185.
风速/(m/s) | 风向 | 环境温度/K | 大气压力/kPa | 泄漏孔高度/m | 泄漏孔直径/m | 液氢质量分数% | 泄漏速率/(m/s) |
---|---|---|---|---|---|---|---|
2.9 | +Y | 284.65 | 101.325 | 0.86 | 0.0263 | 35 | 106 |
表1 HSL test7实验条件[8-9]
Table 1 Experimental conditions for test 7 by HSL[8-9]
风速/(m/s) | 风向 | 环境温度/K | 大气压力/kPa | 泄漏孔高度/m | 泄漏孔直径/m | 液氢质量分数% | 泄漏速率/(m/s) |
---|---|---|---|---|---|---|---|
2.9 | +Y | 284.65 | 101.325 | 0.86 | 0.0263 | 35 | 106 |
1 | 刘玮, 万燕鸣, 熊亚林, 等. “双碳”目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. |
Liu W, Wan Y M, Xiong Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. | |
2 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
Li L L, Fan S S, Chen Q X, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
3 | Buttner W, Hall J, Coldrick S, et al. Hydrogen wide area monitoring of LH2 releases[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12497-12510. |
4 | 邵翔宇, 蒲亮, 雷刚, 等. 液氢泄漏事故中氢气可燃云团的扩散规律研究[J]. 西安交通大学学报, 2018, 52(9): 102-108. |
Shao X Y, Pu L, Lei G, et al. Investigation on the hydrogen flammable cloud dispersion in liquid hydrogen leakage accident[J]. Journal of Xi’an Jiaotong University, 2018, 52(9): 102-108. | |
5 | Witcofski R D, Chirivella J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435. |
6 | Statharas J C, Venetsanos A G, Bartzis J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000, 77(1/2/3): 57-75. |
7 | Schmidtchen U, Marinescu-Pasoi L, Verfondern K, et al. Simulation of accidental spills of cryogenic hydrogen in a residential area[J]. Cryogenics, 1994, 34: 401-404. |
8 | Hooker P, Willoughby D, Royle M. Experimental releases of liquid hydrogen[C]//International Conference on Hydrogen Safety. United Kingdom: British Crown, 2011. |
9 | Hall J E, Hooker P, Willoughby D. Ignited releases of liquid hydrogen: safety considerations of thermal and overpressure effects[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20547-20553. |
10 | Middha P, Hansen O R. Using computational fluid dynamics as a tool for hydrogen safety studies[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 295-302. |
11 | Yuan W H, Li J F, Zhang R P, et al. Numerical investigation of the leakage and explosion scenarios in China’s first liquid hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18786-18798. |
12 | Li Z Y, Pan X M, Ma J X. Quantitative risk assessment on a gaseous hydrogen refueling station in Shanghai[J]. International Journal of Hydrogen Energy, 2010, 35(13): 6822-6829. |
13 | Suzuki T, Shiota K, Izato Y I, et al. Quantitative risk assessment using a Japanese hydrogen refueling station model[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8329-8343. |
14 | 柯道友, 毕景良, 李雪芳. 氢气泄漏过程的理论模型计算及CFD模拟[J]. 化工学报, 2013, 64(9): 3088-3095. |
David M C, Bi J L, Li X F. Integral model and CFD simulations for hydrogen leaks[J]. CIESC Journal, 2013, 64(9): 3088-3095. | |
15 | 王振华, 蒋军成, 尤飞, 等. 高压氢气储运设施泄漏喷射火过程预测模型及其验证[J]. 化工学报, 2021, 72(10): 5412-5423. |
Wang Z H, Jiang J C, You F, et al. Prediction model for the process of jet fire induced by the leakage of high-pressure hydrogen storage and transportation facilities and its validation[J]. CIESC Journal, 2021, 72(10): 5412-5423. | |
16 | 何倩. 低温压缩氢泄漏射流与爆炸事故研究[D]. 济南: 山东大学, 2021. |
He Q. Study on cryo-compressed hydrogen releases and explosions[D]. Jinan: Shandong University, 2021. | |
17 | Stanley W W Jr. Modeling leaks from liquid hydrogen storage systems[R]. Office of Scientific and Technical Information (OSTI), 2009. |
18 | Nakamichi K, Kihara Y, Okamura T. Observation of liquid hydrogen jet on flashing and evaporation characteristics[J]. Cryogenics, 2008, 48(1/2): 26-30. |
19 | Winters W S, Houf W G. Simulation of small-scale releases from liquid hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3913-3921. |
20 | Holborn P G, Benson C M, Ingram J M. Modelling hazardous distances for large-scale liquid hydrogen pool releases[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23851-23871. |
21 | Pu L, Shao X Y, Zhang S Q, et al. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(2): e2299. |
22 | Liu Y L, Liu Z, Wei J J, et al. Evaluation and prediction of the safe distance in liquid hydrogen spill accident[J]. Process Safety and Environmental Protection, 2021, 146: 1-8. |
23 | Jin T, Liu Y L, Wei J J, et al. Modeling and analysis of the flammable vapor cloud formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 2017, 42(43): 26762-26770. |
24 | Stoffen P G. Guidelines for Quantitative Risk Assessment[M].Netherland: Ministerie van Volkshuisvesting Ruimtelijke Ordening en Milieu, 2005. |
25 | Baraldi D, Venetsanos A G, Papanikolaou E, et al. Numerical analysis of release, dispersion and combustion of liquid hydrogen in a mock-up hydrogen refuelling station[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 303-315. |
26 | Tang X, Pu L, Shao X Y, et al. Dispersion behavior and safety study of liquid hydrogen leakage under different application situations[J]. International Journal of Hydrogen Energy, 2020, 45(55): 31278-31288. |
27 | Ichard M, Hansen O R, Middha P, et al. CFD computations of liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389. |
28 | Hansen O R. Liquid hydrogen releases show dense gas behavior[J]. International Journal of Hydrogen Energy, 2020, 45(2): 1343-1358. |
29 | Giannissi S G, Venetsanos A G, Markatos N, et al. CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15851-15863. |
30 | Giannissi S G, Venetsanos A G, Markatos N, et al. Numerical simulation of LNG dispersion under two-phase release conditions[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 245-254. |
31 | Giannissi S G, Venetsanos A G. A comparative CFD assessment study of cryogenic hydrogen and LNG dispersion[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9018-9030. |
32 | Wang J J, Li Y Z, Wang L, et al. Numerical investigation on subcooled pool film boiling of liquid hydrogen in different gravities[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2646-2657. |
33 | Lemmon E W, Bell I H, Huber M L, et al. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0 [DB]. Gaithersburg: National Institute of Standards and Technology, 2018. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[5] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[6] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[7] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[15] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 282
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||