化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5056-5064.DOI: 10.11949/0438-1157.20221149
张慧颖1(), 蔡伟华2, 高明1(), 王宇航1, 何锁盈1
收稿日期:
2022-08-15
修回日期:
2022-09-21
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
高明
作者简介:
张慧颖(1996—),女,博士研究生,1678481142@qq.com
基金资助:
Huiying ZHANG1(), Weihua CAI2, Ming GAO1(), Yuhang WANG1, Suoying HE1
Received:
2022-08-15
Revised:
2022-09-21
Online:
2022-11-05
Published:
2022-12-06
Contact:
Ming GAO
摘要:
为了快速准确地预测出质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)在冷启动过程中的启动时长及启动方法的应用效果,提出了以堆栈温度和温度增量分别作为BP(back propagation)神经网络预测目标的堆栈温度实时预测模型,分别为模型T和模型K,并采用四个不同的预测精度评估标准来评估预测结果的准确性。基于文献中三种冷启动工况实验数据对预测模型进行验证,结果表明,模型K的平均相对误差在三种工况下均低于模型T,分别为0.4553、0.9537和1.0844。模型T在早期预测阶段缺乏训练样本,预测结果的堆栈温度变化趋势为零,因而模型K在早期预测阶段具有更大优势。堆栈温度变化趋势预测方法能够为用户当前的PEMFC冷启动实现效果提供参考。
中图分类号:
张慧颖, 蔡伟华, 高明, 王宇航, 何锁盈. 质子交换膜燃料电池冷启动堆栈温度预测模型[J]. 化工学报, 2022, 73(11): 5056-5064.
Huiying ZHANG, Weihua CAI, Ming GAO, Yuhang WANG, Suoying HE. Cold-start stack temperature prediction model for proton exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(11): 5056-5064.
冷启动预测工况 | 预测模型 | MRD | MSE | RMSE | R2 |
---|---|---|---|---|---|
1 | T | 0.8431 | 10.4632 | 3.2347 | 0.9237 |
K | 0.4553 | 2.6385 | 1.6243 | 0.9808 | |
2 | T | 1.4804 | 11.4387 | 3.3821 | 0.9052 |
K | 0.9537 | 6.4051 | 2.5308 | 0.9469 | |
3 | T | 1.1509 | 9.1069 | 3.0178 | 0.9147 |
K | 1.0844 | 17.2858 | 4.1576 | 0.8382 |
表1 实时PEMFC堆栈温度变化趋势预测结果评估
Table 1 Evaluation of real-time PEMFC stack temperature trend prediction results
冷启动预测工况 | 预测模型 | MRD | MSE | RMSE | R2 |
---|---|---|---|---|---|
1 | T | 0.8431 | 10.4632 | 3.2347 | 0.9237 |
K | 0.4553 | 2.6385 | 1.6243 | 0.9808 | |
2 | T | 1.4804 | 11.4387 | 3.3821 | 0.9052 |
K | 0.9537 | 6.4051 | 2.5308 | 0.9469 | |
3 | T | 1.1509 | 9.1069 | 3.0178 | 0.9147 |
K | 1.0844 | 17.2858 | 4.1576 | 0.8382 |
1 | 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520. |
Xu B. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm[J]. CIESC Journal, 2021, 72(3): 1512-1520. | |
2 | 邱玥, 周苏洋, 顾伟, 等. “碳达峰、碳中和”目标下混氢天然气技术应用前景分析[J]. 中国电机工程学报, 2022, 42(4): 1301-1321. |
Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(4): 1301-1321. | |
3 | 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171. |
Liu Y D, Guo H X, Ouyang X P. Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171. | |
4 | Pahon E, Bouquain D, Hissel D, et al. Performance analysis of proton exchange membrane fuel cell in automotive applications[J]. Journal of Power Sources, 2021, 510: 230385. |
5 | Sürer M G, Arat H T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19865-19875. |
6 | Zhu Y K, Lin R, Han L H, et al. Investigation on cold start of polymer electrolyte membrane fuel cells stacks with diverse cathode flow fields[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5580-5592. |
7 | Luo Y, Wu Y H, Li B, et al. Development and application of fuel cells in the automobile industry[J]. Journal of Energy Storage, 2021, 42: 103124. |
8 | 季玮琛, 林瑞. 质子交换膜燃料电池冷启动研究及策略优化现状[J]. 科学通报, 2022, 67(19): 2241-2257. |
Ji W C, Lin R. Strategy optimization of proton exchange membrane fuel cell cold start[J]. Chinese Science Bulletin, 2022, 67(19): 2241-2257. | |
9 | Luo Y Q, Jiao K. Cold start of proton exchange membrane fuel cell[J]. Progress in Energy and Combustion Science, 2018, 64: 29-61. |
10 | Lin R, Zhong D, Lan S B, et al. Experimental validation for enhancement of PEMFC cold start performance: based on the optimization of micro porous layer[J]. Applied Energy, 2021, 300: 117306. |
11 | Lin R, Zhu Y K, Ni M, et al. Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start[J]. Applied Energy, 2019, 241: 420-432. |
12 | Yang Z R, Jiao K, Wu K C, et al. Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems[J]. Energy, 2021, 222: 119910. |
13 | Li Q H, Liu Z Q, Sun Y, et al. A review on temperature control of proton exchange membrane fuel cells[J]. Processes, 2021, 9(2): 235. |
14 | Luo M Z, Zhang J, Zhang C Z, et al. Cold start investigation of fuel cell vehicles with coolant preheating strategy[J]. Applied Thermal Engineering, 2022, 201: 117816. |
15 | Sun J Q, Yang X K, Sun S C, et al. Investigation on the temperature uniformity and efficiency of cold start-up for proton exchange membrane fuel cell stack based on catalytic hydrogen/oxygen method[J]. Journal of Power Sources, 2021, 496: 229755. |
16 | Zhong D, Lin R, Jiang Z H, et al. Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations[J]. Applied Energy, 2020, 264: 114626. |
17 | 林瑞, 蒋正华, 任应时, 等. 低温工况下燃料电池性能衰减及策略优化[J]. 同济大学学报(自然科学版), 2018, 46(5): 658-666. |
Lin R, Jiang Z H, Ren Y S, et al. Performance degradation and strategy optimization of PEMFCs under sub-freezing temperature[J]. Journal of Tongji University (Natural Science), 2018, 46(5): 658-666. | |
18 | 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282. | |
19 | 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154. |
Wei L, Liao Z H, Jiang F M. Numerical study on cold start of PEMFC with coolant circulation[J]. CIESC Journal, 2019, 70(S2): 146-154. | |
20 | 张雪霞, 高雨璇, 陈维荣. 基于数据驱动的质子交换膜燃料电池寿命预测[J]. 西南交通大学学报, 2020, 55(2): 417-427. |
Zhang X X, Gao Y X, Chen W R. Data-driven based remaining useful life prediction for proton exchange membrane fuel cells[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 417-427. | |
21 | Liu H, Chen J, Hissel D, et al. Short-term prognostics of PEM fuel cells: a comparative and improvement study[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6077-6086. |
22 | 冯能莲,赵倩倩,雍加望.基于非线性动态模型的质子交换膜燃料电池故障诊断[J].化工学报, 2022, 73(9): 3983-3993. |
Feng N L, Zhao Q Q, Yong J W. Model-based fault diagnosis method for proton exchange membrane fuel cell system[J]. CIESC Journal, 2022, 73(9): 3983-3993. | |
23 | Aubry J, Steiner N Y, Morando S, et al. Fuel cell diagnosis methods for embedded automotive applications[J]. Energy Reports, 2022, 8: 6687-6706. |
24 | Wang X C, Chen J Z, Quan S W, et al. Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells[J]. Applied Energy, 2020, 276: 115460. |
25 | Desantes J M, Novella R, Pla B, et al. A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications[J]. Applied Energy, 2022, 317: 119137. |
26 | 杨秋香. 人工神经网络法在PEMFC性能研究中的应用[J]. 电源技术, 2018, 42(9): 1341-1344. |
Yang Q X. Application of artificial neural network to proton exchange membrane fuel cell performance research[J]. Chinese Journal of Power Sources, 2018, 42(9): 1341-1344. | |
27 | Feng S S, Huang W T, Huang Z, et al. Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model[J]. Applied Energy, 2022, 317: 119158. |
28 | Musharavati F. Four dimensional bio-inspired optimization approach with artificial intelligence for proton exchange membrane fuel cell[J]. International Journal of Energy Research, DOI:10.1002/er.8007 . |
29 | Zhang C W, Chen S R, Gao H B, et al. State of charge estimation of power battery using improved back propagation neural network[J]. Batteries, 2018, 4(4): 69. |
30 | 颜建国, 郑书闽, 郭鹏程, 等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657. |
Yan J G, Zheng S M, Guo P C, et al. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657. | |
31 | 胡兵, 王小娟, 徐立军, 等. 基于KMO-PCA-BP的燃料电池堆输出电压预测方法[J]. 太阳能学报, 2022, 43(3): 12-19. |
Hu B, Wang X J, Xu L J, et al. Output voltage prediction method of fuel cell stack based on KMO-PCA-BP[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 12-19. | |
32 | 李继清, 王爽, 段志鹏, 等. 基于ESMD-BP神经网络组合模型的中长期径流预报[J]. 应用基础与工程科学学报, 2020, 28(4): 817-832. |
Li J Q, Wang S, Duan Z P, et al. Medium and long-term runoff forecast based on ESMD-BP neural network combined model[J]. Journal of Basic Science and Engineering, 2020, 28(4): 817-832. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[6] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[7] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[8] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[9] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[10] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[11] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[12] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[13] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[14] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[15] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||