化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 74-86.DOI: 10.11949/0438-1157.20221605
程成1,2(), 段钟弟1(), 孙浩然3, 胡海涛3, 薛鸿祥1
收稿日期:
2022-12-13
修回日期:
2023-01-09
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
段钟弟
作者简介:
程成(1994—),男,硕士,助理工程师,chengcheng94@sjtu.edu.cn
基金资助:
Cheng CHENG1,2(), Zhongdi DUAN1(), Haoran SUN3, Haitao HU3, Hongxiang XUE1
Received:
2022-12-13
Revised:
2023-01-09
Online:
2023-06-05
Published:
2023-09-27
Contact:
Zhongdi DUAN
摘要:
析晶污垢是一种普遍存在于换热设备中的有害结晶,损耗设备的换热性能。在换热表面设置粗糙微结构对流动和换热影响显著,也使得表面的析晶污垢沉积机理变得十分复杂。基于析晶沉积动力学理论,建立了有限差分-格子动力学耦合模型,对碳酸钙在微细通道换热表面的沉积特性进行分析,并讨论表面微结构单元的分布间距和高度对结垢行为的影响。结果表明,建立的有限差分-格子动力学耦合模型能够有效模拟微结构背风面的局部涡流和换热表面的结垢过程;微结构分布间距的缩减和高度的增加均会明显使高壁温区域的析晶沉积过程由表面反应主导转变为传质扩散主导;与光滑换热表面的析晶沉积工况对比,微结构的设置及高度增加使换热表面污垢沉积量增多,相邻微结构间的涡也随沉积时间逐渐变小。
中图分类号:
程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86.
Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling[J]. CIESC Journal, 2023, 74(S1): 74-86.
参数 | 数值 | 文献 |
---|---|---|
运动黏度υf/(m2/s) | 1×10-6 | — |
扩散系数Ds/(m2/s) | 0.79×10-9 | [ |
析晶常数k0/(m4/(kg·s2)) | 1.65×1022 | [ |
活化能Ea/(kJ/mol) | 179 | [ |
气体常数R/(J/(mol·K)) | 8.314 | — |
流体密度ρl /(kg/m3) | 971 | [ |
碳酸钙密度ρcrystal/(kg/m3) | 2870 | [ |
流体热导率λl /(W/(m·K)) | 0.66 | [ |
碳酸钙热导率λcrystal/(W/(m·K)) | 5.09 | [ |
表1 数值模型的常量设置
Table 1 Constant settings for numerical models
参数 | 数值 | 文献 |
---|---|---|
运动黏度υf/(m2/s) | 1×10-6 | — |
扩散系数Ds/(m2/s) | 0.79×10-9 | [ |
析晶常数k0/(m4/(kg·s2)) | 1.65×1022 | [ |
活化能Ea/(kJ/mol) | 179 | [ |
气体常数R/(J/(mol·K)) | 8.314 | — |
流体密度ρl /(kg/m3) | 971 | [ |
碳酸钙密度ρcrystal/(kg/m3) | 2870 | [ |
流体热导率λl /(W/(m·K)) | 0.66 | [ |
碳酸钙热导率λcrystal/(W/(m·K)) | 5.09 | [ |
入口流速uin/ (m/s) | Vortex length in LBM/mm | Vortex length in Comsol/mm |
---|---|---|
0.01 | 0.4398 | 0.4608 |
0.02 | 0.6854 | 0.6550 |
0.03 | 0.9029 | 0.8468 |
0.04 | 1.1041 | 1.0596 |
0.05 | 1.3053 | 1.2094 |
表2 微结构单元附近旋涡长度对比验证
Table 2 Validation of vortex length near microstructural elements
入口流速uin/ (m/s) | Vortex length in LBM/mm | Vortex length in Comsol/mm |
---|---|---|
0.01 | 0.4398 | 0.4608 |
0.02 | 0.6854 | 0.6550 |
0.03 | 0.9029 | 0.8468 |
0.04 | 1.1041 | 1.0596 |
0.05 | 1.3053 | 1.2094 |
计算工况 | 数量n | 相邻微结构间距d/mm | 微结构横截面高h/mm | 微结构横截面宽w/mm | 首个微结构与入口距离Lin/mm |
---|---|---|---|---|---|
case_d or case_h | 10 | 2 | 0.4 | 0.4 | 6 |
case_+d | 4 | 6 | 0.4 | 0.4 | 6 |
case_-d | 19 | 1 | 0.4 | 0.4 | 6 |
case_-h | 10 | 2 | 0.2 | 0.4 | 6 |
case_+h | 10 | 2 | 0.6 | 0.4 | 6 |
表3 不同间距与高度的微结构设置工况
Table 3 Microstructure cases with different spacing and height
计算工况 | 数量n | 相邻微结构间距d/mm | 微结构横截面高h/mm | 微结构横截面宽w/mm | 首个微结构与入口距离Lin/mm |
---|---|---|---|---|---|
case_d or case_h | 10 | 2 | 0.4 | 0.4 | 6 |
case_+d | 4 | 6 | 0.4 | 0.4 | 6 |
case_-d | 19 | 1 | 0.4 | 0.4 | 6 |
case_-h | 10 | 2 | 0.2 | 0.4 | 6 |
case_+h | 10 | 2 | 0.6 | 0.4 | 6 |
计算工况 | 数量n | 相邻微结构间距d/ mm | 微结构横截面高h/ mm | 微结构横截面宽w/ mm | 首个微结构与入口距离Lin/ mm |
---|---|---|---|---|---|
case_1 | 0 | — | — | — | — |
case_2 | 19 | 1 | 0.4 | 0.1 | 6 |
case_3 | 19 | 1 | 0.6 | 0.1 | 6 |
case_4 | 19 | 1 | 0.8 | 0.1 | 6 |
表4 不同高度微结构设置下的析晶生长工况
Table 4 Crystallization growth cases under different height microstructure settings
计算工况 | 数量n | 相邻微结构间距d/ mm | 微结构横截面高h/ mm | 微结构横截面宽w/ mm | 首个微结构与入口距离Lin/ mm |
---|---|---|---|---|---|
case_1 | 0 | — | — | — | — |
case_2 | 19 | 1 | 0.4 | 0.1 | 6 |
case_3 | 19 | 1 | 0.6 | 0.1 | 6 |
case_4 | 19 | 1 | 0.8 | 0.1 | 6 |
1 | 张仲彬, 李煜, 杜祥云, 等. 水质对板式换热器结垢的影响权重及其机制分析[J]. 中国电机工程学报, 2012, 32(32): 69-74, 12. |
Zhang Z B, Li Y, Du X Y, et al. Influences of water quality's effect weights and mechanisms on fouling of plate heat exchangers[J]. Proceedings of the CSEE, 2012, 32(32): 69-74, 12. | |
2 | 徐志明, 郭进生, 黄兴, 等. 水质参数与板式换热器结垢的关联[J]. 化工学报, 2011, 62(2): 344-347. |
Xu Z M, Guo J S, Huang X, et al. Relationship between water quality parameters and fouling in plate heat exchangers[J]. CIESC Journal, 2011, 62(2): 344-347. | |
3 | 王佳豪, 王丁. 油田管道结垢的成因及数值模拟结垢研究[J]. 辽宁化工, 2022, 51(5): 617-619, 628. |
Wang J H, Wang D. Study on causes and numerical simulation of pipeline fouling in oilfields[J]. Liaoning Chemical Industry, 2022, 51(5): 617-619, 628. | |
4 | 赵中华, 邢晓凯, 周恒, 等. 表面特性对污垢结垢行为影响研究综述[J]. 石油化工高等学校学报, 2018, 31(2): 89-95. |
Zhao Z H, Xing X K, Zhou H, et al. Review on the effect of surface characteristics on fouling behavior[J]. Journal of Petrochemical Universities, 2018, 31(2): 89-95. | |
5 | 孔祥兵. 换热器管内颗粒污垢生长特性试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
Kong X B. The experimental investigation of the particulate fouling growth characteristics in heat exchanger tube[D]. Harbin: Harbin Institute of Technology, 2008. | |
6 | 刘义达, 邹勇, 赵亮, 等. 表面粗糙度对析晶污垢附着的影响[J]. 工程热物理学报, 2010, 31(8): 1355-1358. |
Liu Y D, Zou Y, Zhao L, et al. Effect of surface roughness on adhesion of crystalline fouling[J]. Journal of Engineering Thermophysics, 2010, 31(8): 1355-1358. | |
7 | Keysar S, Semiat R, Hasson D, et al. Effect of surface roughness on the morphology of calcite crystallizing on mild steel[J]. Journal of Colloid and Interface Science, 1994, 162(2): 311-319. |
8 | Pääkkönen T M, Riihimäki M, Simonson C J, et al. Modeling CaCO3 crystallization fouling on a heat exchanger surface — Definition of fouling layer properties and model parameters[J]. International Journal of Heat and Mass Transfer, 2015, 83: 84-98. |
9 | Pääkkönen T M, Riihimäki M, Simonson C J, et al. Crystallization fouling of CaCO3 — analysis of experimental thermal resistance and its uncertainty[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6927-6937. |
10 | Zhang F, Xiao J, Chen X D. Towards predictive modeling of crystallization fouling: a pseudo-dynamic approach[J]. Food and Bioproducts Processing, 2015, 93: 188-196. |
11 | Chen L, Kang Q J, Mu Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. |
12 | 康利云, 阚安康, 曹丹, 等. 基于Lattice-Boltzmann方法的泡沫材料有效热导率研究[J]. 制冷技术, 2015, 35(3): 15-18. |
Kang L Y, Kan A K, Cao D, et al. Research on effective thermal conductivity of foam material based on lattice-Boltzmann method[J]. Chinese Journal of Refrigeration Technology, 2015, 35(3): 15-18. | |
13 | Huang J T, Yang W A. Boundary conditions of the lattice Boltzmann method for convection-diffusion equations[J]. Journal of Computational Physics, 2015, 300: 70-91. |
14 | Huang H B, Lu X Y, Sukop M C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(5): 055001. |
15 | Sotiropoulos F, Yang X L. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65: 1-21. |
16 | 孙梅玉, 姬忠礼. 陶瓷过滤管基体内三维气体流动的格子Boltzmann方法模拟[J]. 化工学报, 2008, 59(12): 3027-3032. |
Sun M Y, Ji Z L. Lattice Boltzmann simulations of three-dimensional gaseous flows through ceramic filter matrixes[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(12): 3027-3032. | |
17 | Zhou L, Qu Z G, Ding T, et al. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media[J]. Physical Review. E, 2016, 93: 043101. |
18 | 穆嫒萍, 叶丁丁, 陈蓉, 等. 基于棉线的微流体燃料电池阳极传质特性LB模拟[J]. 化工学报, 2020, 71(7): 3278-3287, 3393. |
Mu A P, Ye D D, Chen R, et al. LB simulation of anode mass transfer characteristics in cotton thread-based microfluidic fuel cell[J]. CIESC Journal, 2020, 71(7): 3278-3287, 3393. | |
19 | 郭亚丽, 徐鹤函, 沈胜强, 等. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流[J]. 物理学报, 2013, 62(14): 318-323. |
Guo Y L, Xu H H, Shen S Q, et al. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method[J]. Acta Physica Sinica, 2013, 62(14): 318-323. | |
20 | 马强, 陈俊, 陈振乾. 分形多孔介质传热传质过程的格子Boltzmann模拟[J]. 化工学报, 2014, 65(S1): 180-187. |
Ma Q, Chen J, Chen Z Q. Lattice Boltzmann simulation for heat and mass transfer in fractal porous media[J]. CIESC Journal, 2014, 65(S1): 180-187. | |
21 | He P. Lattice Boltzmann method simulation of ice melting process in the gas diffusion layer of fuel cell[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119121. |
22 | 郭亚丽, 徐鹤函, 沈胜强. 纳米流体液滴在水平加热面上的变形行为特性[J]. 化工学报, 2012, 63(10): 3057-3061. |
Guo Y L, Xu H H, Shen S Q. Deformation behavior of nanofluid droplet on heated horizontal surface[J]. CIESC Journal, 2012, 63(10): 3057-3061. | |
23 | 周伟煜, 梁文清, 钱华, 等. 固空沉积的数值模拟[J]. 制冷技术, 2019, 39(1): 21-27, 60. |
Zhou W Y, Liang W Q, Qian H, et al. Numerical simulation of sedimentary formation of solid air[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 21-27, 60. | |
24 | Chen L, Kang Q J, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(4): 043306. |
25 | Chen L. Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2014, 75: 483-496. |
26 | Kang Q J, Zhang D X, Lichtner P C, et al. Lattice Boltzmann model for crystal growth from supersaturated solution[J]. Geophysical Research Letters, 2004, 31(21): 133-147. |
27 | Chen L. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. |
28 | Sullivan S P, Sani F M, Johns M L, et al. Simulation of packed bed reactors using lattice Boltzmann methods[J]. Chemical Engineering Science, 2005, 60(12): 3405-3418. |
29 | Tang S Z, Wang F L, Ren Q L, et al. Fouling characteristics analysis and morphology prediction of heat exchangers with a particulate fouling model considering deposition and removal mechanisms[J]. Fuel, 2017, 203: 725-738. |
30 | Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Mathematical modelling of mixed salt precipitation during convective heat transfer and sub-cooled flow boiling[J]. Chemical Engineering Science, 2005, 60(18): 5078-5088. |
31 | He X Y, Zou Q S, Luo L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1): 115-136. |
[1] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[2] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[3] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[4] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[5] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[6] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[7] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[8] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
[9] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[10] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[11] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[12] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[13] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[14] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[15] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 583
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||