化工学报 ›› 2024, Vol. 75 ›› Issue (9): 3113-3121.DOI: 10.11949/0438-1157.20240281
陈超伟1(), 柳洋1, 杜文静1, 李金波2, 史大阔3, 辛公明1(
)
收稿日期:
2024-03-08
修回日期:
2024-05-07
出版日期:
2024-09-25
发布日期:
2024-10-10
通讯作者:
辛公明
作者简介:
陈超伟(1996—),男,博士研究生,17853141067@163.com
基金资助:
Chaowei CHEN1(), Yang LIU1, Wenjing DU1, Jinbo LI2, Dakuo SHI3, Gongming XIN1(
)
Received:
2024-03-08
Revised:
2024-05-07
Online:
2024-09-25
Published:
2024-10-10
Contact:
Gongming XIN
摘要:
集成电路的发展使芯片尺寸缩小但设备功耗急剧增加,由此引发的电子设备散热问题已成为限制其快速发展的重要瓶颈。微通道冷却目前被认为是实现超高热通量散热最具前景的技术。设计并制备了具有不同肋片结构的多种硅基微肋通道热沉,对其在局部热点下的流动传热特性进行实验研究和对比分析。结果表明交错肋微通道的流动阻力较低,在相同Reynolds数条件下,其压降比方肋微通道降低22.8%。综合对比,交错肋可以在更低的流动损失条件下有效破坏流体的近壁面边界层的发展,从而使热沉以较低的泵功实现对更高热通量的高效冷却,相比于方肋微通道其COP最高可提升14.1%。而热点不同位置变化对热沉最高温度影响不大。
中图分类号:
陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121.
Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots[J]. CIESC Journal, 2024, 75(9): 3113-3121.
Parameters | Maximum relative uncertainties |
---|---|
Q | 1% |
ΔP | 0.067% |
Tin&Tout | 0.2℃ |
TRTD | 0.5℃ |
q | 10.21% |
COP | 10.26% |
表1 各指标最大不确定度
Table 1 Maximum uncertainty of each indicator
Parameters | Maximum relative uncertainties |
---|---|
Q | 1% |
ΔP | 0.067% |
Tin&Tout | 0.2℃ |
TRTD | 0.5℃ |
q | 10.21% |
COP | 10.26% |
Flow | Heat transfer | ||||||
---|---|---|---|---|---|---|---|
Q/(μl/min) | ΔP模拟/kPa | ΔP实验/kPa | Error/% | qh/(W/cm2) | TM,模拟/℃ | TM,实验/℃ | Error/% |
500 | 5.12 | 5.00 | 2.40 | 520 | 38.42 | 39.27 | 5.96 |
1000 | 10.71 | 10.80 | 0.83 | 630 | 41.25 | 41.40 | 0.91 |
1500 | 16.77 | 17.40 | 3.62 | 741 | 44.12 | 43.53 | 3.18 |
2000 | 23.24 | 24.50 | 5.14 | 856 | 47.08 | 45.82 | 6.05 |
2500 | 30.09 | 32.25 | 6.70 | 977 | 50.11 | 48.12 | 8.61 |
3000 | 37.27 | 40.40 | 7.75 | 1100 | 52.98 | 50.62 | 9.21 |
表2 实验与模拟对比
Table 2 Comparison of experiment and simulation results
Flow | Heat transfer | ||||||
---|---|---|---|---|---|---|---|
Q/(μl/min) | ΔP模拟/kPa | ΔP实验/kPa | Error/% | qh/(W/cm2) | TM,模拟/℃ | TM,实验/℃ | Error/% |
500 | 5.12 | 5.00 | 2.40 | 520 | 38.42 | 39.27 | 5.96 |
1000 | 10.71 | 10.80 | 0.83 | 630 | 41.25 | 41.40 | 0.91 |
1500 | 16.77 | 17.40 | 3.62 | 741 | 44.12 | 43.53 | 3.18 |
2000 | 23.24 | 24.50 | 5.14 | 856 | 47.08 | 45.82 | 6.05 |
2500 | 30.09 | 32.25 | 6.70 | 977 | 50.11 | 48.12 | 8.61 |
3000 | 37.27 | 40.40 | 7.75 | 1100 | 52.98 | 50.62 | 9.21 |
28 | Sharma C S, Schlottig G, Brunschwiler T, et al. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684-694. |
29 | Waddell A M, Punch J, Stafford J, et al. The characterization of a low-profile channel-confined jet for targeted hot-spot cooling in microfluidic applications[J]. International Journal of Heat and Mass Transfer, 2016, 101: 620-628. |
30 | Holman J P, Gajda W J. Experimental Methods for Engineers[M]. New York: McGraw-Hill,1994. |
1 | Sohel Murshed S M, Nieto de Castro C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833. |
2 | Kandlikar S, Colin S, Peles Y, et al. Heat transfer in microchannels-2012 status and research needs[J]. Journal of Heat Transfer, 2013, 135: 091001. |
3 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
4 | Yao Z, Lu Y W, Kandlikar S G. Pool boiling heat transfer enhancement through nanostructures on silicon microchannels[J]. Journal of Nanotechnology in Engineering and Medicine, 2012, 3(3): 031002. |
5 | Wang S L, An D, Yang Y R, et al. Improving the hydrothermal characteristics of wavy microchannel heat sink by modification of wavelength and wave amplitude[J]. International Journal of Thermal Sciences, 2023, 185: 108080. |
6 | Mills Z G, Warey A, Alexeev A. Heat transfer enhancement and thermal-hydraulic performance in laminar flows through asymmetric wavy walled channels[J]. International Journal of Heat and Mass Transfer, 2016, 97: 450-460. |
7 | Rostami J, Abbassi A, Saffar-Avval M. Optimization of conjugate heat transfer in wavy walls microchannels[J]. Applied Thermal Engineering, 2015, 82: 318-328. |
8 | 康宁, 吴慧英, 徐法尧. 硅基内肋阵列微通道内的流动和换热特性[J]. 工程热物理学报, 2015, 36(7): 1572-1577. |
Kang N, Wu H Y, Xu F Y. Flow and heat transfer characteristics in silicon-based pin-fin microchannels[J]. Journal of Engineering Thermophysics, 2015, 36(7): 1572-1577. | |
9 | Gupta D, Saha P, Roy S. Computational analysis of perforation effect on the thermo-hydraulic performance of micro pin-fin heat sink[J]. International Journal of Thermal Sciences, 2021, 163: 106857. |
10 | Marschewski J, Brechbühler R, Jung S, et al. Significant heat transfer enhancement in microchannels with herringbone-inspired microstructures[J]. International Journal of Heat and Mass Transfer, 2016, 95: 755-764. |
11 | Ali Ghani I, Kamaruzaman N, Sidik N A C. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1969-1981. |
12 | Yang M, Li M T, Hua Y C, et al. Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120230. |
13 | Chiam Z L, Lee P S, Singh P K, et al. Investigation of fluid flow and heat transfer in wavy micro-channels with alternating secondary branches[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1316-1330. |
14 | 李昀, 曹杰, 华夏, 等. 短程逆流式微通道内的流动沸腾传热特性实验研究[J]. 化工学报, 2023, 74(11): 4501-4514. |
Li Y, Cao J, Hua X, et al. Experimental investigation on flow boiling heat transfer characteristics in short flow passage counter-flow microchannels[J]. CIESC Journal, 2023, 74(11): 4501-4514. | |
15 | Chen C W, Li F, Wang X Y, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129. |
16 | Li X Y, Wang S L, Wang X D, et al. Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks[J]. International Journal of Thermal Sciences, 2019, 137: 616-626. |
17 | Lu G, Zhao J, Lin L, et al. A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins[J]. International Journal of Heat and Mass Transfer, 2017, 111: 1071-1078. |
18 | Zhou F, Zhou W, Qiu Q F, et al. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger[J]. Applied Thermal Engineering, 2018, 137: 616-631. |
19 | Shen H, Xie G N, Wang C C. The numerical simulation with staggered alternation locations and multi-flow directions on the thermal performance of double-layer microchannel heat sinks[J]. Applied Thermal Engineering, 2019, 163: 114332. |
20 | 张井志, 赵玉婷, 王英迪, 等. 正弦型微通道内液-液两相流型及流动特性实验研究[J]. 化工学报, 2022, 73(3): 1111-1118. |
Zhang J Z, Zhao Y T, Wang Y D, et al. Experimental study on liquid-liquid two-phase flow pattern and flow characteristics in sinusoidal microchannels[J]. CIESC Journal, 2022, 73(3): 1111-1118. | |
21 |
刘文竹, 云和明, 王宝雪, 等. 基于场协同和![]() |
Liu W Z, Yun H M, Wang B X, et al. Research on topology optimization of microchannel based on field synergy and entransy dissipation[J]. CIESC Journal, 2023, 74(8): 3329-3341. | |
22 | Chai L, Wang L. Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers[J]. International Journal of Thermal Sciences, 2018, 127: 201-212. |
23 | Chai L, Xia G D, Wang H S. Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse microchambers[J]. International Journal of Thermal Sciences, 2016, 110: 1-11. |
24 | Wang G L, Qian N, Ding G F. Heat transfer enhancement in microchannel heat sink with bidirectional rib[J]. International Journal of Heat and Mass Transfer, 2019, 136: 597-609. |
25 | Li F, Ma Q M, Xin G M, et al. Heat transfer and flow characteristics of microchannels with solid and porous ribs[J]. Applied Thermal Engineering, 2020, 178: 115639. |
26 | Lee Y J, Singh P K, Lee P S. Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study[J]. International Journal of Heat and Mass Transfer, 2015, 81: 325-336. |
27 | Lee Y J, Lee P S, Chou S K. Hotspot mitigating with obliquely finned microchannel heat sink—an experimental study[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(8): 1332-1341. |
[1] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[2] | 陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743. |
[3] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[4] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[5] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[6] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[7] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[8] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[9] | 黄晓峰, 刘朝晖, 杨帆. 高密度碳氢燃料JP-10流动换热及热裂解结焦实验研究[J]. 化工学报, 2024, 75(8): 2917-2928. |
[10] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[11] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
[12] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[13] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[14] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
[15] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 206
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||