化工学报

• •    

微肋板表面干冰升华喷雾冷却传热数值实验研究

李怡菲1,2(), 董新宇2, 王为术1, 刘璐2(), 赵一璠2   

  1. 1.华北水利水利水电大学能源与动力工程学院,河南 郑州 450045
    2.华北电力大学动力工程系,河北 保定 071000
  • 收稿日期:2023-10-31 修回日期:2024-12-17 出版日期:2024-03-22
  • 通讯作者: 刘璐
  • 作者简介:李怡菲(2001—),女,硕士研究生,16634862916@163.com
  • 基金资助:
    河北省自然科学基金项目(E2022502002);中央高校基本科研业务费专项资金(2022MS083)

Numerical experimental study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate

Yifei LI1,2(), Xinyu DONG2, Weishu WANG1, Lu LIU2(), Yifan ZHAO2   

  1. 1.College of energy and power, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China
    2.Department of power engineering, North China Electric Power University, Baoding 071000, Hebei, China
  • Received:2023-10-31 Revised:2024-12-17 Online:2024-03-22
  • Contact: Lu LIU

摘要:

针对高度集成化和微型模块化高热载荷电子元器件温度控制问题,基于CFD两相求解器,采用数值实验研究了微肋板表面干冰升华喷雾冷却传热特性。结果表明微肋板表面和热源上表面的温度、传热系数、冷却热通量基本呈环形分布,越靠近中心干冰颗粒越多,温度越低,冷却性能越高。热源上表面中心线上中心温度最低,并且其冷却热通量和传热系数呈M型分布。当喷嘴入口速度和干冰占比增大时,模拟热源表面的传热系数和冷却热通量也随之增大,而温度则整体降低。在喷嘴入口速度为20m/s,干冰占比为40%时得到相对最优的冷却热通量170W/cm2和相对最优的传热系数12500W/(m2·K)。

关键词: 喷雾相变冷却, 干冰升华, 传热, 数值模拟, 冷却性能

Abstract:

Aiming at the temperature control problem of highly integrated and micro-modular electronic components with high heat load, based on CFD two-phase solver, the heat transfer characteristics of dry ice sublimation spray cooling on the surface of micro-ribbed plate were studied by numerical experiments. The results show that the temperature, heat transfer coefficient and cooling heat flux on the surface of micro-ribbed plate and the upper surface of heat source are basically annular distribution. The closer to the center, the more dry ice particles, the lower the temperature and the higher the cooling performance. The center temperature on the center line of the upper surface of the heat source is the lowest, and its cooling heat flux and heat transfer coefficient are M-shaped. When the inlet velocity of the nozzle and the proportion of dry ice increase, the heat transfer coefficient and cooling heat flux on the surface of the simulated heat source also increase, while the temperature decreases as a whole. The optimal cooling heat flux of 170W/cm2 and the optimal heat transfer coefficient of 12 500 W/( m2·K) were obtained when the nozzle inlet speed was 20m/s and the dry ice ratio was 40%.

Key words: spray phase change cooling, dry ice sublimation, heat transfer, numerical simulation, cooling performance

中图分类号: