化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4532-4552.DOI: 10.11949/0438-1157.20200454
收稿日期:
2020-04-29
修回日期:
2020-06-30
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
谭陆西,周才龙
作者简介:
周威(1996—),男,硕士研究生,基金资助:
Wei ZHOU(),Li CHEN,Jingcheng DU,Luxi TAN(),Lichun DONG,Cailong ZHOU()
Received:
2020-04-29
Revised:
2020-06-30
Online:
2020-10-05
Published:
2020-10-05
Contact:
Luxi TAN,Cailong ZHOU
摘要:
由于水资源污染、淡水资源日益匮乏,水危机已经严重影响到人们的日常生活。从晨雾中捕获水气则可以缓解干旱地区的缺水问题。受纳米布沙漠甲虫、仙人掌、蜘蛛丝等动植物自发捕集雾水的启发,构建特殊润湿性的仿生雾水收集材料备受关注。详细总结了仿生雾水收集材料的最新研究进展,讨论了仿生集水材料的设计和制备方法,并从雾水收集的四大仿生策略出发,介绍了提升雾水收集效率的设计方案。在此基础上,分析了当前仿生雾水收集过程存在的问题,展望了此类材料未来的发展趋势和方向。
中图分类号:
周威, 陈立, 杜京城, 谭陆西, 董立春, 周才龙. 仿生雾水收集材料:从基础研究到性能提升策略[J]. 化工学报, 2020, 71(10): 4532-4552.
Wei ZHOU, Li CHEN, Jingcheng DU, Luxi TAN, Lichun DONG, Cailong ZHOU. Bio-inspired fog harvesting materials: from fundamental research to promotional strategy[J]. CIESC Journal, 2020, 71(10): 4532-4552.
1 | Gorjian S, Ghobadian B. Solar desalination: a sustainable solution to water crisis in iran[J]. Renew. Sust. Energ. Rev., 2015, 48: 571-584. |
2 | El-Ghonemy A M K. Fresh water production from/by atmospheric air for arid regions, using solar energy: review[J]. Renew. Sust. Energ. Rev., 2012, 16: 6384-6422. |
3 | Grubert E A, Stillwell A S, Webber M E. Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites[J]. Desalination, 2014, 339: 10-17. |
4 | Raluy R G, Serra L, Uche J. Life cycle assessment of desalination technologies integrated with renewable energies[J]. Desalination, 2005, 183: 81-93. |
5 | 文刚, 郭志光, 刘维民. 仿生超润湿材料的研究进展[J]. 中国科学:化学, 2018, 48: 1531-1547. |
Wen G, Guo Z G, Liu W M. Research progress of biomimetic superwetting materials [J]. Scientia Sinica: Chemistry, 2018, 48: 1531-1547. | |
6 | 江雷. 仿生智能纳米材料[M]. 北京: 科学出版社, 2015: 7. |
Jiang L. Biomimetic Intelligent Nanomaterials [M]. Beijing: Science Press, 2015: 7. | |
7 | Wu H, Zhang R, Sun Y, et al. Biomimetic nanofiber patterns with controlled wettability[J]. Soft Matter, 2008, 4: 2429-2433. |
8 | Avinash M B, Verheggen E, Schmuck C, et al. Self-cleaning functional molecular materials[J]. Angew. Chem., Int. Ed., 2012, 51: 10324-10328. |
9 | Abualhamayel H I, Gandhidasan P. A method of obtaining fresh water from the humid atmosphere[J]. Desalination, 1997, 113: 51-63. |
10 | Klemm O, Schemenauer R S, Lummerich A, et al. Fog as a fresh-water resource: overview and perspectives[J]. Ambio, 2012, 41: 221-234. |
11 | Bartholomew G A, Lighton J R B, Louw G N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the namib desert[J]. J. Comp. Physiol. B, 1985, 155: 155-162. |
12 | Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat. Commun., 2012, 3: 1247. |
13 | Yi S, Wang J, Chen Z, et al. Cactus‐inspired conical spines with oriented microbarbs for efficient fog harvesting[J]. Adv. Mater. Technol., 2019, 4: 1900727. |
14 | Feng R, Xu C, Song F, et al. A bioinspired slippery surface with stable lubricant impregnation for efficient water harvesting[J]. ACS Appl. Mater. Interfaces, 2020, 12: 12373-12381. |
15 | 陈振, 张增志, 杜红梅, 等. 仿生材料在集水领域应用的研究现状[J]. 材料工程, 2020, 48: 10-18. |
Chen Z, Zhang Z Z, Du H M, et al. Research status of biomimetic materials in the field of water collection [J]. Materials Engineering, 2020, 48:10-18. | |
16 | Yin K, Du H, Dong X, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9: 14620-14626. |
17 | Young T. An essay on the cohesion of fluids[J]. Phil. Trans. R. Soc. London, 1805, 95: 65-87. |
18 | Xia F, Jiang L. Bio‐inspired, smart, multiscale interfacial materials[J]. Adv. Mater., 2008, 20: 2842-2858. |
19 | Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. J. Am. Chem. Soc., 2016, 138: 1727-1748. |
20 | Berg J M, Eriksson L T, Claesson P M, et al. Three-component langmuir-blodgett films with a controllable degree of polarity[J]. Langmuir, 1994, 10: 1225-1234. |
21 | Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988-994. |
22 | Cassie A, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546-551. |
23 | Furmidge C. Studies at phase interfaces(I): The sliding of liquid drops on solid surfaces and a theory for spray retention[J]. J. Colloid Interface Sci., 1962, 17: 309-324. |
24 | Li C, Li J, Chen C, et al. Tailoring ordered taper-nanopore arrays by combined nanosphere self-assembling, imprinting, anodizing and etching[J]. Chem. Commun., 2012, 48: 5100-5102. |
25 | Gao X, Jiang L. Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432: 36-38. |
26 | Feng L, Zhang Y, Xi J, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24: 4114-4119. |
27 | Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414: 33-34. |
28 | Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nat. Commun., 2012, 3: 1-6. |
29 | Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463: 640-643. |
30 | Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature, 2016, 532: 85-89. |
31 | Daniel S. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291: 633-636. |
32 | Chaudhury M K, Whitesides G M. Correlation between surface free energy and surface constitution[J]. Science, 1992, 255: 1230-1232. |
33 | Lorenceau L, Qur D. Drops on a conical wire[J]. J. Fluid Mech., 2004, 510: 29-45. |
34 | Lee J, Hwang S, Cho D H, et al. Rf plasma based selective modification of hydrophilic regions on super hydrophobic surface[J]. Appl. Surf. Sci., 2017, 394: 543-553. |
35 | Gao Y, Wang J, Xia W, et al. Reusable hydrophilic-superhydrophobic patterned weft backed woven fabric for high-efficiency water-harvesting application[J]. ACS Sustain. Chem. Eng., 2018, 6: 7216-7220. |
36 | Wang Y, Zhang L, Wu J, et al. A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting[J]. J. Mater. Chem. A, 2015, 3: 18963-18969. |
37 | Cao M, Xiao J, Yu C, et al. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection[J]. Small, 2015, 11: 4379-4384. |
38 | Wang B, Zhang Y, Liang W, et al. A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface[J]. J. Mater. Chem. A, 2014, 2: 7845-7852. |
39 | Xu C, Feng R, Song F, et al. Desert beetle-inspired superhydrophilic/superhydrophobic patterned cellulose film with efficient water collection and antibacterial performance[J]. ACS Sustain. Chem. Eng., 2018, 6: 14679-14684. |
40 | Ye Q, Zhou F, Liu W. Bioinspired catecholic chemistry for surface modification[J]. Chem. Soc. Rev., 2011, 40: 4244-4258. |
41 | Takei G, Nonogi M, Hibara A, et al. Tuning microchannel wettability and fabrication of multiple-step Laplace valves[J]. Lab Chip, 2007, 7: 596-602. |
42 | Bai H, Wang L, Ju J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Adv. Mater., 2014, 26: 5025-5030. |
43 | Zahner D, Abagat J, Svec F, et al. A facile approach to superhydrophilic-superhydrophobic patterns in porous polymer films[J]. Adv. Mater., 2011, 23: 3030-3034. |
44 | Seo J, Lee S, Lee J, et al. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4722-4729. |
45 | Zhang L, Wu J, Hedhili M N, et al. Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces[J]. J. Mater. Chem. A, 2015, 3: 2844-2852. |
46 | Nishimoto S, Kubo A, Nohara K, et al. TiO2-based superhydrophobic-superhydrophilic patterns: fabrication via an ink-jet technique and application in offset printing[J]. Appl. Surf. Sci., 2009, 255: 6221-6225. |
47 | Yu Z, Yun F F, Wang Y, et al. Desert beetle-inspired superwettable patterned surfaces for water harvesting[J]. Small, 2017, 13: 1701403. |
48 | Moazzam P, Tavassoli H, Razmjou A, et al. Mist harvesting using bioinspired polydopamine coating and microfabrication technology[J]. Desalination, 2018, 429: 111-118. |
49 | Tian X, Chen Y, Zheng Y, et al. Controlling water capture of bioinspired fibers with hump structures[J]. Adv. Mater., 2011, 23: 5486-5491. |
50 | Day R W, Mankin M N, Gao R, et al. Plateau-rayleigh crystal growth of periodic shells on one-dimensional substrates[J]. Nat. Nanotechnol., 2015, 10: 345-352 |
51 | Bai H, Tian X, Zheng Y, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Adv. Mater., 2010, 22: 5521-5525. |
52 | Bai H, Ju J, Sun R, et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Adv. Mater., 2011, 23: 3708-3711. |
53 | Chen Y, Wang L, Xue Y, et al. Bioinspired spindle-knotted fibers with a strong water-collecting ability from a humid environment[J]. Soft Matter, 2012, 8: 11450-11454. |
54 | Bai H, Sun R, Ju J, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7: 3429-3433. |
55 | He X H, Wang W, Liu Y M, et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection[J]. ACS Appl. Mater. Interfaces, 2015, 7: 17471-17481. |
56 | Choi C H, Yi H, Hwang S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab Chip, 2011, 11: 1477-1483. |
57 | Cheng Y, Zheng F, Lu J, et al. Bioinspired multicompartmental microfibers from microfluidics[J]. Adv. Mater., 2014, 26: 5184-5190. |
58 | Tian X, Bai H, Zheng Y, et al. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting[J]. Adv. Funct. Mater., 2011, 21: 1398-1402. |
59 | Zhao L, Song C, Zhang M, et al. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles[J]. Chem. Commun., 2014, 50: 10651-10654. |
60 | Dong H, Wang N, Wang L, et al. Bioinspired electrospun knotted microfibers for fog harvesting[J]. ChemPhysChem, 2012, 13: 1153-1156. |
61 | Ju J, Yao X, Yang S, et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection[J]. Adv. Funct. Mater., 2014, 24: 6933-6938. |
62 | Peng Y, He Y, Yang S, et al. Magnetically induced fog harvesting via flexible conical arrays[J]. Adv. Funct. Mater., 2015, 25: 5967-5971. |
63 | Ju J, Xiao K, Yao X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Adv. Mater., 2013, 25: 5937-5942. |
64 | Heng X, Xiang M, Lu Z, et al. Branched ZnO wire structures for water collection inspired by cacti[J]. ACS Appl. Mater. Interfaces, 2014, 6: 8032-8041. |
65 | Xing H, Cheng J, Zhou C, et al. Fog collection on a conical copper wire: effect of fog flow velocity and surface morphology[J]. Micro Nano Lett., 2018, 13: 1068-1070. |
66 | Li X, Yang Y, Liu L, et al. 3D‐printed cactus‐inspired spine structures for highly efficient water collection[J]. Adv. Mater. Interfaces, 2019, 7: 1-10. |
67 | Wong T S, Kang S H, Tang S K, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477: 443-447. |
68 | Wang Y, Qian B, Lai C, et al. Flexible slippery surface to manipulate droplet coalescence and sliding, and its practicability in wind-resistant water collection[J]. ACS Appl. Mater. Interfaces, 2017, 9: 24428-24432. |
69 | Huang Y, Stogin B B, Sun N, et al. A switchable cross-species liquid repellent surface[J]. Adv. Mater., 2017, 29: 1604641. |
70 | Chen H, Zhang L, Zhang P, et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata[J]. Small, 2017, 13: 1601676. |
71 | Li C, Li N, Zhang X, et al. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids[J]. Angew. Chem., Int. Ed., 2016, 55:14988-14992. |
72 | Tandon V, Kang W S, Robbins T A, et al. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing[J]. Lab Chip, 2016, 16: 829-846. |
73 | Moghadam A D, Omrani E, Menezes P L, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review[J]. Compos. B. Eng., 2015, 77: 402-420. |
74 | Zhong L, Zhang R, Li J, et al. Efficient fog harvesting based on 1D copper wire inspired by the plant pitaya[J]. Langmuir, 2018, 34: 15259-15267. |
75 | Varanasi K K, Ming H, Bhate N, et al. Spatial control in the heterogeneous nucleation of water[J]. Appl. Phys. Lett., 2009, 95: 094101. |
76 | He M, Zhang Q, Zeng X, et al. Hierarchical porous surface for efficiently controlling microdroplets self-removal[J]. Adv. Mater., 2013, 25: 2291-2295. |
77 | Hu R, Wang N, Hou L, et al. A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection[J]. J. Mater. Chem. A, 2019, 7: 124-132. |
78 | Ren F, Li G, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. J. Mater. Chem. A, 2017, 5: 18403-18408. |
79 | Bai H, Zhang C, Long Z, et al. A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability[J]. J. Mater. Chem. A, 2018, 6: 20966-20972. |
80 | Liu W, Fan P, Cai M, et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 2019, 11: 8940-8949. |
81 | Wang Y, Wang X, Lai C, et al. Biomimetic water-collecting fabric with light-induced superhydrophilic bumps[J]. ACS Appl. Mater. Interfaces, 2016, 8: 2950-2960. |
82 | Xing Y, Shang W, Wang Q, et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection[J]. ACS Appl. Mater. Interfaces, 2019, 11: 10951-10958. |
83 | Park K C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016, 531(7592): 78-82. |
84 | Zhang X, Sun L, Wang Y, et al. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping[J]. Proc. Natl. Acad. Sci. U.S.A., 2019, 116: 20863-20868. |
85 | Wang Y, Liang X, Ma K, et al. Nature-inspired windmill for water collection in complex windy environments[J]. ACS Appl. Mater. Interfaces, 2019, 11: 17952-17959. |
86 | Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nat. Mater., 2018, 17: 935-942. |
87 | Li J, Zhou Y, Wang W, et al. A bio-inspired superhydrophobic surface for fog collection and directional water transport[J]. J. Alloys Compd., 2020, 819: 152968. |
88 | Kim S W, Kim J, Park S S, et al. Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister[J]. Desalination, 2020, 479: 114314. |
[1] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[2] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[3] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[4] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[5] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[6] | 刘星伟, 贾胜坤, 罗祎青, 袁希钢. 基于信赖域算法的精馏塔优化[J]. 化工学报, 2022, 73(5): 2031-2038. |
[7] | 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 板式换热器及其热力系统的运行特性和高级分析[J]. 化工学报, 2021, 72(S1): 512-519. |
[8] | 侯勇俊, 祝敬涛, 李华川, 吴先进, 蒋锐. 均衡运动旋转振动筛DEM数值模拟[J]. 化工学报, 2021, 72(5): 2706-2717. |
[9] | 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122. |
[10] | 于程远, 吴金奎, 周利, 吉旭, 戴一阳, 党亚固. 基于深度学习预测有机光伏电池能量转换效率[J]. 化工学报, 2021, 72(3): 1487-1495. |
[11] | 郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551. |
[12] | 许晓佳, 吴永真, 朱为宏. CsPbX3钙钛矿材料与光伏器件稳定性强化研究进展[J]. 化工学报, 2020, 71(9): 3933-3949. |
[13] | 黄健, 赵众. 延迟焦化加热炉热效率的机理建模与实时估计应用[J]. 化工学报, 2020, 71(7): 3140-3150. |
[14] | 姚春, 黄龙龙, 常江伟, 丁一旺, 于畅, 邱介山. 碳分子筛的优化设计及其I3-还原性能研究[J]. 化工学报, 2020, 71(6): 2696-2704. |
[15] | 叶小琴, 闻沚玥, 沈王强, 卢兴. 富勒烯材料在钙钛矿太阳能电池中的应用[J]. 化工学报, 2020, 71(6): 2510-2529. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 235
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 684
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||