化工学报 ›› 2024, Vol. 75 ›› Issue (1): 20-32.DOI: 10.11949/0438-1157.20230773
收稿日期:
2023-07-25
修回日期:
2023-09-21
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
赵亮
作者简介:
王尤佳(1994—),女,博士研究生,youjia94@126.com
基金资助:
Youjia WANG(), Liang ZHAO(
), Jinsen GAO, Chunming XU
Received:
2023-07-25
Revised:
2023-09-21
Online:
2024-01-25
Published:
2024-03-11
Contact:
Liang ZHAO
摘要:
随着我国炼油技术的不断提高与新能源的开发利用,燃料市场趋向饱和,柴油出现明显过剩。将柴油通过分离手段转油为化,实现族组分中芳烃/非芳烃的高效低碳分离,是实现柴油高值化利用、缓解过剩问题的重要途径。首先阐述了我国柴油族组成的分布规律,提出针对直馏柴油与催化裂化柴油(FCC柴油)进行分离时切入点的差异;详细介绍了柴油中芳烃与链烷烃的分离技术,如溶剂萃取、膜分离、吸附分离、尿素络合等,并分析讨论了各种分离技术的优劣势以及未来研究方向;最后对柴油中芳烃与链烷烃的分离进行了总结与展望。
中图分类号:
王尤佳, 赵亮, 高金森, 徐春明. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32.
Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components[J]. CIESC Journal, 2024, 75(1): 20-32.
技术类型 | 分离介质 | 分离介质的作用 | 分离对象 | 具体介质 | 分离效果 | 文献 |
---|---|---|---|---|---|---|
吸附分离 | 吸附剂:活性炭、 分子筛、氧化铝等 | 吸附剂表面具有对特定组分的选择性吸附能力 | 加氢精制柴油 | MgY分子筛 | R=1.32 (长周期) | [ |
溶剂萃取 | 互不相溶的有机溶剂/ 离子液体体系 | 利用链烷烃-芳烃溶解能力的差异实现对二者的重新分布 | 十二烷(1)/1-甲基萘(2) | 环丁砜 | S=285.50 D2=0.88 | [ |
二甲基亚砜 | S=179.56 D2=0.97 | [ | ||||
十六烷(1)/1-甲基萘(2) | [BMIM][BF4] | S=670.68 D2=0.27 | [ | |||
膜分离 | 特定孔径的半透膜 | 利用浓度差作为动力选择性通过不同组分 | 十四烷/菲 | 芳香聚酰亚胺膜 | PSI=1.53 kg∙m-2∙h-1 | [ |
表1 柴油芳烃分离技术对比
Table 1 The separation technology of aromatics in diesel
技术类型 | 分离介质 | 分离介质的作用 | 分离对象 | 具体介质 | 分离效果 | 文献 |
---|---|---|---|---|---|---|
吸附分离 | 吸附剂:活性炭、 分子筛、氧化铝等 | 吸附剂表面具有对特定组分的选择性吸附能力 | 加氢精制柴油 | MgY分子筛 | R=1.32 (长周期) | [ |
溶剂萃取 | 互不相溶的有机溶剂/ 离子液体体系 | 利用链烷烃-芳烃溶解能力的差异实现对二者的重新分布 | 十二烷(1)/1-甲基萘(2) | 环丁砜 | S=285.50 D2=0.88 | [ |
二甲基亚砜 | S=179.56 D2=0.97 | [ | ||||
十六烷(1)/1-甲基萘(2) | [BMIM][BF4] | S=670.68 D2=0.27 | [ | |||
膜分离 | 特定孔径的半透膜 | 利用浓度差作为动力选择性通过不同组分 | 十四烷/菲 | 芳香聚酰亚胺膜 | PSI=1.53 kg∙m-2∙h-1 | [ |
技术类型 | 分离介质 | 分离介质的作用 | 分离对象 | 具体介质 | 分离效果 | 文献 |
---|---|---|---|---|---|---|
尿素络合 | 尿素(过饱和溶液) | 与长碳链正构烷烃形成络合物得以沉降 | 大庆直馏柴油 | 尿素异丙醇水溶液 | W=58.1% P=95.4% | [ |
分子筛脱蜡 | 5A分子筛 | 对链烷烃的择形吸附 | 精制煤油 | NWA-Ⅲ | W>98% P>99% | [ |
降温结晶 | 醇、酮类等低沸点溶剂 | 保证体系流动性、促进蜡的结晶析出 | 常三线柴油 | 乙酸乙酯 | W=11.04% P=99.94% | [ |
表2 柴油链烷烃分离技术对比
Table 2 The separation technology of paraffin in diesel
技术类型 | 分离介质 | 分离介质的作用 | 分离对象 | 具体介质 | 分离效果 | 文献 |
---|---|---|---|---|---|---|
尿素络合 | 尿素(过饱和溶液) | 与长碳链正构烷烃形成络合物得以沉降 | 大庆直馏柴油 | 尿素异丙醇水溶液 | W=58.1% P=95.4% | [ |
分子筛脱蜡 | 5A分子筛 | 对链烷烃的择形吸附 | 精制煤油 | NWA-Ⅲ | W>98% P>99% | [ |
降温结晶 | 醇、酮类等低沸点溶剂 | 保证体系流动性、促进蜡的结晶析出 | 常三线柴油 | 乙酸乙酯 | W=11.04% P=99.94% | [ |
1 | 瞿国华. 我国清洁柴油生产的热点和难点[J]. 石油化工技术与经济, 2019, 35(3): 1-6. |
Qu G H. Hot spots and difficulties in the production of clean diesel in China[J]. Technology & Economics in Petrochemicals, 2019, 35(3): 1-6. | |
2 | 郭春垒, 范景新, 臧甲忠, 等. 柴油高值化综合利用技术发展现状及分析[J]. 化工进展, 2018, 37(11): 4205-4213. |
Guo C L, Fan J X, Zang J Z, et al. Development of high-value utilization technologies of diesel[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4205-4213. | |
3 | Choi Y, Lee J, Shin J, et al. Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons[J]. Applied Catalysis A: General, 2015, 492: 140-150. |
4 | 熊磊, 朱宏武, 张金亚, 等. 海底分离技术的最新进展[J]. 石油机械, 2010, 38(10): 75-78. |
Xiong L, Zhu H W, Zhang J Y, et al. Recent advances in seabed separation technology[J]. China Petroleum Machinery, 2010, 38(10): 75-78. | |
5 | 王华, 刘艳飞, 彭东明, 等. 膜分离技术的研究进展及应用展望[J]. 应用化工, 2013, 42(3): 532-534. |
Wang H, Liu Y F, Peng D M, et al. The development of membrane separation technology and its application prospect[J]. Applied Chemical Industry, 2013, 42(3): 532-534. | |
6 | 张一舸, 曹祖宾, 杨帆, 等. 世界油砂分离技术进展[J]. 天然气工业, 2008, 28(12): 110-113, 149. |
Zhang Y G, Cao Z B, Yang F, et al. World development status of oil-sand separation technologies[J]. Natural Gas Industry, 2008, 28(12): 110-113, 149. | |
7 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532: 435-437. |
8 | 任连岭, 徐鹏, 葛锐. 烃族组成对柴油储存安定性影响研究[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 176-182. |
Ren L L, Xu P, Ge R. Effects of hydrocarbon composition on the stability of diesel storage[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(2): 176-182. | |
9 | 侯亚洲, 魏晓丽, 毛安国. 直馏柴油催化裂化生产轻质芳烃的研究[J]. 石油炼制与化工, 2017, 48(10): 35-40. |
Hou Y Z, Wei X L, Mao A G. Study on straight-run diesel fraction to light aromatics[J]. Petroleum Processing and Petrochemicals, 2017, 48(10): 35-40. | |
10 | 王佳. 柴油烃类组成分子水平预测研究[D]. 北京: 石油化工科学研究院, 2015. |
Wang J. Study on predicting composition of diesel oil hydrocarbon in molecular level[D]. Beijing: Research Institute of Petroleum Processing, 2015. | |
11 | 徐先荣, 毛安国. 催化裂化柴油轻重馏分的裂化性能研究[J]. 炼油技术与工程, 2007, 37(6): 1-5. |
Xu X R, Mao A G. Study on the catalytic cracking performance of FCC LCO[J]. Petroleum Refinery Engineering, 2007, 37(6): 1-5. | |
12 | 李梦瑶. FCC柴油加氢精制过程中组成结构变化规律研究[D]. 东营: 中国石油大学(华东), 2016. |
Li M Y. Study on composition and structures of the FCC diesel in hydrotreating process[D]. Dongying: China University of Petroleum, 2016. | |
13 | 张锐, 鞠雪艳, 李云, 等. 催化裂化柴油加氢处理生产高密度喷气燃料的研究[J]. 石油炼制与化工, 2022, 53(1): 46-52. |
Zhang R, Ju X Y, Li Y, et al. Development of the LCO hydrotreating technology to produce high-density jet fuel[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 46-52. | |
14 | 米多. 芳烃抽提技术进展[J]. 化学工业, 2009, 27(8): 34-37, 45. |
Mi D. Recent progress of extraction technologies for aromatics[J]. Chemical Industry, 2009, 27(8): 34-37, 45. | |
15 | 施志国, 张翠金. 芳烃抽提技术研究进展[J]. 化肥设计, 2018, 56(2): 4-8. |
Shi Z G, Zhang C J. Research progress of aromatic extraction[J]. Chemical Fertilizer Design, 2018, 56(2): 4-8. | |
16 | 齐江, 延玉臻, 李林, 等. 溶剂萃取法提高催化裂化柴油十六烷值的研究[J]. 石油炼制与化工, 1997, 28(11): 7-9. |
Qi J, Yan Y Z, Li L, et al. Improving LCO cetane number by solvent extraction[J]. Petroleum Processing and Petrochemicals, 1997, 28(11): 7-9. | |
17 | 谢琼玉, 徐斌. 催化裂化柴油溶剂抽提降芳烃工艺技术研究[J]. 石油炼制与化工, 2012, 43(4):10-14. |
Xie Q Y, Xu B. Research on the solvent extraction of aromatic hydrocarbon from FCC diesel fractions[J]. Petroleum Processing and Petrochemicals, 2012, 43(4):10-14. | |
18 | Li H, Guo J, Zhang Y, et al. Influence of solvent structure on the extraction of aromatics from FCC diesel and computational thermodynamics study[J]. Fuel Processing Technology, 2021, 224: 107021. |
19 | Li H, Guo J J, Zhang Y H, et al. Research on separation of aromatics from FCC diesel using organic solvent: a combination of experiments and quantum chemical calculations[J]. Fuel, 2022, 308: 121982. |
20 | 熊良铨, 吕贞, 刘亚娟, 等. 溶剂萃取脱除橡胶油中多环芳烃试验探讨[J]. 润滑油, 2011, 26(1): 56-60. |
Xiong L Q, Lv Z, Liu Y J, et al. Study on the removal of polycyclic aromatic hydrocarbon from rubber oil with solvent extraction[J]. Lubricating Oil, 2011, 26(1): 56-60. | |
21 | 唐晓东, 杨谨, 仝保田, 等. 催化裂化柴油萃取脱芳烃技术研究[J]. 石油炼制与化工, 2020, 51(8): 12-18. |
Tang X D, Yang J, Tong B T, et al. Study on aromatics removal from FCC diesel by extraction[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 12-18. | |
22 | 栗红. FCC柴油芳烃组分萃取分离过程基础研究[D]. 北京: 中国石油大学(北京), 2022. |
Li H. Fundamental research on the FCC diesel extraction process for aromatics separation[D]. Beijing: China University of Petroleum, 2022. | |
23 | 边超. 催化裂化柴油抽提芳烃工艺研究[D]. 天津: 河北工业大学, 2016. |
Bian C. The study on aromatics extraction process of FCC diesel oil[D]. Tianjin: Hebei University of Technology, 2016. | |
24 | Holbrey J D, Reichert W M, Nieuwenhuyzen M, et al. Liquid clathrate formation in ionic liquid-aromatic mixtures[J]. Chemical Communications, 2003(4): 476-477. |
25 | Meindersma G W, Hansmeier A R, de Haan A B. Ionic liquids for aromatics extraction. Present status and future outlook[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7530-7540 |
26 | Meindersma G W, de Haan A B. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture[J]. Science China Chemistry, 2012, 55(8): 1488-1499. |
27 | Larriba M, Navarro P, García J, et al. Liquid-liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2714-2720. |
28 | Manohar C V, Banerjee T, Mohanty K. Co-solvent effects for aromatic extraction with ionic liquids[J]. Journal of Molecular Liquids, 2013, 180: 145-153. |
29 | Li G X, Gao Q H, Liu Q H, et al. Extraction of polycyclic aromatic hydrocarbons from fluid catalytic cracking diesel with ionic liquids[J]. AIChE Journal, 2023, 69(2): e17914. |
30 | 高腾飞, 李国选, 雷志刚. 从催化裂化柴油中分离联苯的溶剂筛选: 实验和计算热力学[J]. 化工学报, 2022, 73(12): 5314-5323. |
Gao T F, Li G X, Lei Z G. Solvents selection for separation of bicyclic aromatics from FCC diesel: experimental and computational thermodynamics[J]. CIESC Journal, 2022, 73(12): 5314-5323. | |
31 | Liu Q H, Li G X, Gui C M, et al. Solvents evaluation for extraction of polycyclic aromatics from FCC diesel: experimental and computational thermodynamics[J]. Chemical Engineering Science, 2022, 264: 118205. |
32 | 张宇豪, 王永涛, 陈丰, 等. 清洁油品生产中溶剂萃取分离技术的研究进展[J]. 中国科学: 化学, 2018, 48(4): 319-328. |
Zhang Y H, Wang Y T, Chen F, et al. Development of solvent extraction separation process for clean oil production[J]. Scientia Sinica (Chimica), 2018, 48(4): 319-328. | |
33 | 杨启炜, 鲍宗必, 邢华斌, 等. 离子液体萃取分离结构相似化合物研究进展[J]. 化工进展, 2019, 38(1): 91-99. |
Yang Q W, Bao Z B, Xing H B, et al. Research progress on the extractive separation of structurally-related compounds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 91-99. | |
34 | 秦建国, 李树白, 姚培, 等. 咪唑类离子液体脱除油品中芳烃和有机硫的研究进展[J]. 上海化工, 2021, 46(6): 59-63. |
Qin J G, Li S B, Yao P, et al. Progress in the removal of aromatics and organic sulfur from petroleum products by imidazole ionic liquids[J]. Shanghai Chemical Industry, 2021, 46(6): 59-63. | |
35 | 凌长见. 模拟柴油组分在聚合物膜中扩散行为的分子模拟与实验研究[D]. 上海: 华东理工大学, 2013. |
Ling C J. Diffusion behavior of model diesel components in polymer membranes by molecular dynamic simulation and experimental study[D]. Shanghai: East China University of Science and Technology, 2013. | |
36 | 罗世龙, 张中, 韩坤坤, 等. 膜分离技术在食品工业中的应用研究进展[J]. 安徽农业科学, 2021, 49(6): 43-45. |
Luo S L, Zhang Z, Han K K, et al. Research progress on application of membrane separation technology in food industry[J]. Journal of Anhui Agricultural Sciences, 2021, 49(6): 43-45. | |
37 | 赵丽红, 郭佳艺. 膜分离技术在再生水中的应用及膜污染研究进展[J]. 科学技术与工程, 2021, 21(19): 7874-7883. |
Zhao L H, Guo J Y. The application of membrane separation technology in reclaimed water and the progress of membrane fouling research[J]. Science Technology and Engineering, 2021, 21(19): 7874-7883. | |
38 | 王晓丽, 王生辉, 黄鹏飞, 等. 膜分离技术在生态修复工程中的应用[J]. 盐科学与化工, 2021, 50(4): 4-6, 13. |
Wang X L, Wang S H, Huang P F, et al. Application of membrane separation technology to solve the ecological restoration[J]. Journal of Salt Science and Chemical Industry, 2021, 50(4): 4-6, 13. | |
39 | 杨立明, 徐利文, 郭勇. 渗透汽化分离芳烃/烷烃混合体系的研究进展[J]. 化学进展, 2001, 13(4): 303-309. |
Yang L M, Xu L W, Guo Y. Advances in pervaporation membranes for separating mixtures of aromatic and aliphatic hydrocarbons[J]. Progress in Chemistry, 2001, 13(4): 303-309. | |
40 | 方志平, 姜忠义. 苯-环己烷分离渗透蒸发膜的研究进展与展望[J]. 石油化工, 2005, 34(9): 885-890. |
Fang Z P, Jiang Z Y. Progress and prospect in pervaporation membrane for separation of benzene and cyclohexane[J]. Petrochemical Technology, 2005, 34(9): 885-890. | |
41 | 徐利文, 杨立明, 王玉玲, 等. 含砜基聚酰亚胺膜渗透汽化分离苯/环己烷混合物的研究[J]. 高分子材料科学与工程, 2003, 19(2): 184-187. |
Xu L W, Yang L M, Wang Y L, et al. The pervaporation properties of sulfonyl-containing polyimide membranes to benzene/cyclohexane mixtures[J]. Polymer Materials Science & Engineering, 2003, 19(2): 184-187. | |
42 | Roizard D, Nilly A, Lochon P. Preparation and study of crosslinked polyurethane films to fractionate toluene-n-heptane mixtures by pervaporation[J]. Separation and Purification Technology, 2001, 22(23): 45-52. |
43 | Roychowdhury S, Mitra D. Separation of phenanthrene/n-tetradecane mixtures (model diesel) via pervaporation using an aromatic polyimide membrane[J]. Polymer Engineering & Science, 2017, 57(4): 392-402. |
44 | Roychowdhury S, Mitra D. Fabrication of aromatic polyimide membrane to study the pervaporative separation of phenanthrene/n-tetradecane mixtures (model diesel) and process optimization using response surface methodology[J]. Chemical Engineering Communications, 2017, 204(1): 64-78. |
45 | Roychowdhury S, Mitra D. Separation of polyaromatic hydrocarbons from model diesel composition via pervaporation using a fabricated aromatic polyimide membrane and process optimization[J]. Environmental Progress & Sustainable Energy, 2018, 37(6): 1982-1992. |
46 | 王连英, 杨国明, 辛靖, 等. 吸附工艺脱除柴油中芳烃的研究进展[J]. 石化技术与应用, 2021, 39(1): 66-69. |
Wang L Y, Yang G M, Xin J, et al. Research progress on removal of diesel aromatics by adsorption process[J]. Petrochemical Technology & Application, 2021, 39(1): 66-69. | |
47 | 刘剑. 柴油脱芳烃技术研究进展[J]. 精细石油化工进展, 2018, 19(6): 38-41. |
Liu J. Research progress on dearomatization of diesel oil[J]. Advances in Fine Petrochemicals, 2018, 19(6): 38-41. | |
48 | 赵闯, 范景新, 郭春垒, 等. 柴油芳烃吸附剂的失活研究[J]. 无机盐工业, 2020, 52(8): 98-102. |
Zhao C, Fan J X, Guo C L, et al. Study on deactivation of diesel aromatic adsorbent[J]. Inorganic Chemicals Industry, 2020, 52(8): 98-102. | |
49 | 刘凡, 温舒晴, 王昌, 等. 活性炭固定床吸附分离溶液中表面活性剂和多环芳烃[J]. 化工环保, 2017, 37(6): 693-698. |
Liu F, Wen S Q, Wang C, et al. Adsorption and separation of surfactants and polycyclic aromatic hydrocarbons from solution in activated carbon fixed bed[J]. Environmental Protection of Chemical Industry, 2017, 37(6): 693-698. | |
50 | Bu J, Loh G, Gwie C G, et al. Desulfurization of diesel fuels by selective adsorption on activated carbons: competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal, 2011, 166(1): 207-217. |
51 | 于廷云, 梁红玉, 徐勇, 等. 吸附法精制催化裂化柴油[J]. 抚顺石油学院学报, 2001, 21(4): 44-46. |
Yu T Y, Liang H Y, Xu Y, et al. Study on absorption refining of FCC diesel oil[J]. Journal of Fushun Petroleum Institute, 2001, 21(4): 44-46. | |
52 | 韩龙年, 陈新国, 辛靖, 等. 催化柴油增值化、高值化利用工业应用技术发展现状及分析[J]. 石油与天然气化工, 2022, 51(6): 34-40. |
Han L N, Chen X G, Xin J, et al. Development status and analysis of industrial application technology for value-added and high-value utilization of catalytic diesel oil[J]. Chemical Engineering of Oil & Gas, 2022, 51(6): 34-40. | |
53 | 郭春垒, 万馨, 秦培尧. 全球首创:柴油吸附分离技术实现成功应用让成品油不过剩[J]. 中国石油石化, 2020(15): 56-57. |
Guo C L, Wan X, Qin P Y. The world’s first: diesel adsorption and separation technology realizes successful application so that there is no surplus of refined oil products[J]. China Petrochem, 2020(15): 56-57. | |
54 | 臧甲忠, 于海斌, 李滨, 等. 一种由劣质柴油生产清洁柴油和轻质芳烃的方法: 105542849B[P]. 2017-06-23. |
Zang J Z, Yu H B, Li B, et al. A method for producing clean diesel oil and light aromatics from inferior diesel fuel: 105542849B[P]. 2017-06-23. | |
55 | Marti-Rujas J, Desmedt A, Harris K D M, et al. Bidirectional transport of guest molecules through the nanoporous tunnel structure of a solid inclusion compound[J]. The Journal of Physical Chemistry C, 2009, 113(2): 736-743. |
56 | Toudic B, Garcia P, Odin C, et al. Hidden degrees of freedom in aperiodic materials[J]. Science, 2008, 319(5859): 69-71. |
57 | Schmider J, Müller K. 2H NMR investigations of the hexadecane/urea inclusion compound[J]. The Journal of Physical Chemistry A, 1998, 102(7): 1181-1193. |
58 | Smith A E. The crystal structure of the urea-hydrocarbon complexes[J]. Acta Crystallographica, 1952, 5(2): 224-235. |
59 | Kobe K A, Reinhart L R. Separation of organic compounds with urea and thiourea[J]. Journal of Chemical Education, 1959, 36(6): 300-301. |
60 | Redlich O, Gable C M, Dunlop A K, et al. Addition compounds of urea and organic substances[J]. Journal of the American Chemical Society, 1950, 72(9): 4153-4160. |
61 | Yata N. Studies on the urea-dewaxing of lubricating oils[J]. Bulletin of the Japan Petroleum Institute, 1962, 4: 35-44. |
62 | 姚致远, 黄荣荣, 姜仁玲, 等. 尿素络合法生产重质液体石蜡的工艺研究[J]. 化学工业与工程技术, 2001, 22(6): 11-12. |
Yao Z Y, Huang R R, Jiang R L, et al. Study on process of producing heavy liquid paraffin by urea complex[J]. Journal of Chemical Industry & Engineering, 2001, 22(6): 11-12. | |
63 | 苏重时, 全辉, 朱华艺, 等. 高含蜡的沈北原油尿素脱蜡生产变压器油的研究[J]. 石油炼制与化工, 1998, 29(11): 38-41. |
Su Z S, Quan H, Zhu H Y, et al. Production of transformer oil from highly paraffinic Shenbei crude by urea dewaxing technology[J]. Petroleum Processing and Petrochemicals, 1998, 29(11): 38-41. | |
64 | 赵军, 潘大壮. 三种原油的直馏柴油馏分尿素脱蜡研究[J]. 沈阳化工学院学报, 2006, 20(1): 4-8. |
Zhao J, Pan D Z. Study on urea dewaxing among straight-run diesel distillate of three crudes[J]. Journal of Shenyang Institute of Chemical Technology, 2006, 20(1): 4-8. | |
65 | Marquart J R, Dellow G B, Freitas E R. Determination of noraml paraffins in petroleum heavy distillates by urea adduction and gas chromatography[J]. Analytical Chemistry, 1968, 40(11): 1633-1637. |
66 | 温树棠. 尿素脱蜡工艺现状及其发展前景[J]. 辽宁化工, 1985, 14(3): 39-43. |
Wen S T. Present situation and development prospect of urea dewaxing process[J]. Liaoning Chemical Industry, 1985, 14(3): 39-43. | |
67 | 韩德奇, 洪国忠, 李平. 我国液体石蜡生产技术与重液蜡市场分析[J]. 化工科技市场, 2001, 24(8): 20-22. |
Han D Q, Hong G Z, Li P. Production technology of liquid wax and market analysis of heavy liquid wax[J]. Chemial Technology Market, 2001, 24(8): 20-22. | |
68 | 邵光涛, 袁炜. 液体石蜡分离技术在费-托合成油中的应用研究进展[J]. 炼油技术与工程, 2018, 48(3): 1-4. |
Shao G T, Yuan W. Study on application of liquid paraffin separation technologies in F-T synthetic oil[J]. Petroleum Refinery Engineering, 2018, 48(3): 1-4. | |
69 | 王世宏. 相变储能石蜡材料的制备及性能研究[D]. 沈阳: 沈阳建筑大学, 2011. |
Wang S H. The preparation and properties research of paraffin phase change energy storage materials[D]. Shenyang: Shenyang Jianzhu University, 2011. | |
70 | Degnan Jr T F. Applications of zeolites in petroleum refining[J]. Topics in Catalysis, 2000, 13(4): 349-356. |
71 | 王哲. 费托合成石脑油中低碳数正构烃与异构烃的络合分离研究[D]. 杭州: 浙江大学, 2022. |
Wang Z. Study on complexation separation of normal and isomeric hydrocarbons with medium and low carbon number in Fischer-Tropsch synthetic naphtha[D]. Hangzhou: Zhejiang University, 2022. | |
72 | 林本宽. BP公司MS2及UCC公司ISOSIV分子筛脱蜡技术考察[J]. 炼油设计, 1987, 17(1): 19-26. |
Lin B K. Investigation on dewaxing technology of MS2 of BP company and ISOSIV molecular sieve of UCC company[J]. Petroleum Refinery Engineering, 1987, 17(1): 19-26. | |
73 | 李娟. 分子筛脱蜡模拟移动床工业过程的模拟计算与分析[D]. 南京: 南京工业大学, 2005. |
Li J. Simulation and analysis of industrial paraffins separation process on molecular sieve by simulated moving bed adsorption[D]. Nanjing: Nanjing University of Technology, 2005. | |
74 | 武劲松. 新建分子筛脱蜡装置的设计及生产标定[J]. 当代化工, 2003, 32(2): 118-120. |
Wu J S. Design and evaluation of Molex unit[J]. Contemporary Chemical Industry, 2003, 32(2): 118-120. | |
75 | 蔡吉乡. 国产5A分子筛使用后期运行状况的研究和优化[J]. 精细石油化工进展, 2005, 6(4): 18-21. |
Cai J X. Research and optimization of evening application of homemade 5A zeolite[J]. Advances in Fine Petrochemicals, 2005, 6(4): 18-21. | |
76 | 丁云龙. 国产NWA型吸附剂在Molex装置上的工业应用[J]. 当代石油石化, 2003, 11(4): 34-36. |
Ding Y L. Application of China-made NWA adsorbent in Molex units[J]. Petroleum & Petrochemical Today, 2003, 11(4): 34-36. | |
77 | 顾文忠, 陈喜, 徐宏祥. 国产5A分子筛在Molex装置上运行初期分析[J]. 精细石油化工进展, 2000, 1(3): 38-42. |
Gu W Z, Chen X, Xu H X. Analysis of early application of homemade 5A zeolite on Molex unit[J]. Advances in Fine Petrochemicals, 2000, 1(3): 38-42. | |
78 | 王富城. 国产NWA-Ⅲ型分子筛在分子筛脱蜡装置上的应用[J]. 精细石油化工进展, 2015, 16(3): 35-38. |
Wang F C. Application of domestic NWA-Ⅲ molecular sieve in molecular sieve dewaxing unit[J]. Advances in Fine Petrochemicals, 2015, 16(3): 35-38. | |
79 | 奚瀚, 陈乐, 陈群, 等. 分离液体石蜡的5A分子筛吸附剂的制备[J]. 石油化工, 2012, 41(12): 1368-1372. |
Xi H, Chen L, Chen Q, et al. Preparation of 5A molecular sieve absorbent for separation of liquid paraffin[J]. Petrochemical Technology, 2012, 41(12): 1368-1372. | |
80 | 楚迎亚, 陈乐, 陈群. 正硅酸乙酯为硅源制备吸附分离液蜡的5A分子筛的研究[J]. 石油化工, 2014, 43(6): 631-636. |
Chu Y Y, Chen L, Chen Q. Preparation of 5A molecular sieve from ethyl orthosilicate for separation of liquid paraffin[J]. Petrochemical Technology, 2014, 43(6): 631-636. | |
81 | 潘慧. 微晶蜡溶剂脱蜡制备过程的基础研究[D]. 上海: 华东理工大学, 2012. |
Pan H. Basic research on microcrystalline wax production process by solvent dewaxing[D]. Shanghai: East China University of Science and Technology, 2012. | |
82 | Sadulaeva A S, Ol’kov P L, Syrkin A M. Ethers-as solvents in dewaxing of raffinates: communication 1[J]. Chemistry and Technology of Fuels and Oils, 2006, 42(3): 183-187. |
83 | As’Ad A M, Yeneneh A M, Obanijesu E O. Solvent dewaxing of heavy crude oil with methyl ethyl ketone[J]. Journal of Petroleum & Environmental Biotechnology, 2015, 6(2): 1-5. |
84 | Tripathy A, Nimisha, Nath G, et al. Experimental and artificial neural network based analysis of solvent blends for dewaxing of crude oil[J]. Egyptian Journal of Petroleum, 2021, 30(1): 1-5. |
85 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 546-556. |
Xu C M, Yang C H. Petroleum Refinery Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 546-556. | |
86 | Taylor R J, McCormack A J. Study of solvent and catalytic lube oil dewaxing by analysis of feedstocks and products[J]. Industrial & Engineering Chemistry Research, 1992, 31(7): 1731-1738. |
87 | Al-Ameeri R, Fahim M A, Ijam M J, et al. Solvent dewaxing of Kuwait heavy gas oil[J]. Journal of The University of Kuwait-Science, 1985, 12(2): 181-189. |
88 | 武玉民, 刘丹凤. 柴油稀释冷却脱蜡新工艺的研究[J]. 山东轻工业学院学报(自然科学版), 1995, 9(1): 24-25, 45. |
Wu Y M, Liu D F. A study on the new technology of diesel oil dilution and dewaxing[J]. Journal of Shandong Institute of Light Industry (Natural Science Edition), 1995, 9(1): 24-25, 45. | |
89 | 吕涯, 孙磊, 康晓丽. 选择性溶剂萃取生产低凝柴油的溶剂筛选和溶剂选择性的表征[J]. 化学世界, 2008, 49(2): 93-97, 106. |
Lv Y, Sun L, Kang X L. Screening of solvent and characterization of selectivity in solvent extraction for production of low freezing point diesel fuel[J]. Chemical World, 2008, 49(2): 93-97, 106. | |
90 | 吕涯, 陈淑芬. 热力学模型预测低温下柴油中正构烷烃的析出[J]. 化工进展, 2007, 26(12): 1743-1748. |
Lü Y, Chen S F. Prediction of the settling of n-alkane in diesel by thermodynamic model[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1743-1748. | |
91 | Lü Y, Shi J J, Sun L. Investigation of the selection of extraction solvent for extracting the n-alkane from diesel by means of solubility parameters theory[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 297-301. |
92 | 吕涯, 郭婷. 两维新溶解度参数和柴油脱蜡溶剂的选择[J]. 化工学报, 2009, 60(12): 2963-2968. |
Lyu Y, Guo T. Two-dimensional solubility parameters and dewaxing solvent selection for diesels[J]. CIESC Journal, 2009, 60(12): 2963-2968. | |
93 | 吕涯, 闫凯, 孙磊. 应用三维溶解度参数球形模型研究柴油中正构烷烃的分离[J]. 华东理工大学学报(自然科学版), 2010, 36(6): 755-759. |
Lv Y, Yan K, Sun L. n-Alkanes deposition from diesels by three-dimensional solubility parameters sphere model[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(6): 755-759. | |
94 | Qi Y T, Li H P, Qin S R. Influence of paraffin content on low temperature performances of diesel fuel and lube base oil[J]. Petroleum Science and Technology, 2001, 19(3/4): 403-409. |
95 | 王海燕, 李丙庚. 常三线馏分油脱蜡工艺探索及产品应用浅析[J]. 石油商技, 2014, 32(4): 44-47. |
Wang H Y, Li B G. Exploration of dewaxing process of atmospheric third-line distillate oil and analysis of product application [J]. Petroleum Products Application Research, 2014, 32(4): 44-47. |
[1] | 齐元帅, 彭文朝, 李阳, 张凤宝, 范晓彬. 电化学脱盐机理及相关研究进展[J]. 化工学报, 2024, 75(1): 171-189. |
[2] | 郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
[3] | 朱娇, 栾丽萍, 从深震, 刘新磊. 氢气分离有机膜[J]. 化工学报, 2024, 75(1): 138-158. |
[4] | 孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390. |
[5] | 闫可欣, 姜洪涛, 高维群, 郭晓晖, 孙伟振, 赵玲. 电子级多晶硅原料中痕量硼磷杂质的脱除研究进展[J]. 化工学报, 2024, 75(1): 83-94. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[8] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[9] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 513
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||