1 |
韩松. 中国能源结构与产业结构协调发展关系研究综述与展望[J]. 工程建设标准化, 2020(9): 60-70.
|
|
Han S. Review and prospect of the research on coordinated development of China's energy structure and industrial structure[J]. Standardization of Engineering Construction, 2020(9): 60-70.
|
2 |
张建新. 21世纪的国际能源安全问题[J]. 国际安全研究, 2013, 31(6): 124-149, 154.
|
|
Zhang J X. International energy security in the 21th century[J]. Journal of International Security Studies, 2013, 31(6): 124-149, 154.
|
3 |
孙涛, 崔国民, 陈家星, 等. 采用分流比差异优化策略的RWCE算法优化换热网络[J]. 工程热物理学报, 2019, 40(1): 183-190.
|
|
Sun T, Cui G M, Chen J X, et al. Split ratio difference optimization strategy of RWCE algorithm for heat exchanger network synthesis[J]. Journal of Engineering Thermophysics, 2019, 40(1): 183-190.
|
4 |
Kachacha C, Zoughaib A, Tran C T. A methodology for the flexibility assessment of site wide heat integration scenarios[J]. Energy, 2018, 154: 231-239.
|
5 |
何金春, 金俊杰, 孙晋. 炼厂丙烯精制单元换热网络模拟与优化[J]. 石化技术与应用, 2019, 37(2): 116-120.
|
|
He J C, Jin J J, Sun J. Simulation and optimization of heat exchanger network in propylene refining unit of refinery[J]. Petrochemical Technology & Application, 2019, 37(2): 116-120.
|
6 |
Linnhoff B, Mason D R, Wardle I. Understanding heat exchanger networks[J]. Computers & Chemical Engineering, 1979, 3(1/2/3/4): 295-302.
|
7 |
Linnhoff B, Flower J R. Synthesis of heat exchanger networks(I): Systematic generation of energy optimal networks[J]. AIChE Journal, 1978, 24(4): 633-642.
|
8 |
Linnhoff B, Dunford H, Smith R. Heat integration of distillation columns into overall processes[J]. Chemical Engineering Science, 1983, 38(8): 1175-1188.
|
9 |
Trivedi K K, O'Neill B K, Roach J R. Synthesis of heat exchanger networks featuring multiple pinch points[J]. Computers & Chemical Engineering, 1989, 13(3): 291-294.
|
10 |
Asante N D K, Zhu X X. An automated approach for heat exchanger network retrofit featuring minimal topology modifications[J]. Computers & Chemical Engineering, 1996, 20: S7-S12.
|
11 |
Varbanov P S, Klemeš J J. Total sites integrating renewables with extended heat transfer and recovery[J]. Heat Transfer Engineering, 2010, 31(9): 733-741.
|
12 |
Cerda J, Westerberg A W, Mason D, et al. Minimum utility usage in heat exchanger network synthesis A transportation problem[J]. Chemical Engineering Science, 1983, 38(3): 373-387.
|
13 |
Floudas C A, Ciric A R, Grossmann I E. Automatic synthesis of optimum heat exchanger network configurations[J]. AIChE Journal, 1986, 32(2): 276-290.
|
14 |
Dolan W B, Cummings P T, Le Van M D. Algorithmic efficiency of simulated annealing for heat exchanger network design[J]. Computers & Chemical Engineering, 1990, 14(10): 1039-1050.
|
15 |
Zhu X, O'Neill B, Roach J, et al. A method for automated heat-exchanger network synthesis using block decomposition and nonlinear optimization[J]. Chemical Engineering Research & Design, 1995, 73: 919-930.
|
16 |
Huang K F, Al-mutairi E M, Karimi I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing[J]. Chemical Engineering Science, 2012, 73: 30-43
|
17 |
Faria D C, Kim S Y, Bagajewicz M J. Global optimization of the stage-wise superstructure model for heat exchanger networks[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1595-1604.
|
18 |
Mistry M, Misener R. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference[J]. Computers & Chemical Engineering, 2016, 94: 1-17.
|
19 |
Chang C L, Chen X L, Wang Y F, et al. Simultaneous synthesis of multi-plant heat exchanger networks using process streams across plants[J]. Computers & Chemical Engineering, 2017, 101: 95-109.
|
20 |
Chang C L, Chen X L, Wang Y F, et al. Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2017, 121: 306-317.
|
21 |
Chang C L, Chen X L, Wang Y F, et al. An efficient optimization algorithm for waste heat integration using a heat recovery loop between two plants[J]. Applied Thermal Engineering, 2016, 105: 799-806.
|
22 |
Kang L X, Liu Y Z, Wu L. Synthesis of multi-period heat exchanger networks based on features of sub-period durations[J]. Energy, 2016, 116: 1302-1311.
|
23 |
Babak F, Hadi S, Reza H, et al. A novel two surfaces hybrid approach for multi-period heat exchanger networks synthesis by combination of imperialist competitive algorithm and linear programming method[J]. Chemical Engineering Science, 2022, 258: 117755.
|
24 |
Lakner R, Orosz Á, How B S, et al. Synthesis of multiperiod heat exchanger networks: minimum utility consumption in each period[J]. Computers & Chemical Engineering, 2022, 166: 107949.
|
25 |
Kim S Y, Jongsuwat P, Suriyapraphadilok U, et al. Global optimization of heat exchanger networks(part 1): Stages/substages superstructure[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5944-5957.
|
26 |
Kim S Y, Bagajewicz M. Global optimization of heat exchanger networks using a new generalized superstructure[J]. Chemical Engineering Science, 2016, 147: 30-46.
|
27 |
Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration ( Ⅲ ) : Process and heat exchanger network optimization[J]. Computers & Chemical Engineering, 1990, 14(11): 1185-1200.
|
28 |
Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration ( Ⅰ ) : Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164.
|
29 |
Yee T F, Grossmann I E. Simultaneous optimization models for heat integration(Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
|
30 |
Chen J J J. Comments on improvements on a replacement for the logarithmic mean[J]. Chemical Engineering Science, 1987, 42(10): 2488-2489.
|
31 |
Stijepovic M Z, Linke P. Optimal waste heat recovery and reuse in industrial zones[J]. Energy, 2011, 36(7): 4019-4031.
|