1 |
魏文建, 常守金, 丁二刚, 等. 不同结构风冷换热器风侧特性对比分析[J]. 制冷技术, 2020, 40(5): 53-57.
|
|
Wei W J, Chang S J, Ding E G, et al. Comparison and analysis on air-side characteristics for air-cooling heat exchangers with different structures[J]. Chinese Journal of Refrigeration Technology, 2020, 40(5): 53-57.
|
2 |
Zhang L, Song M J, Chao C Y H, et al. Localized characteristics of the first three typical condensation frosting stages in the edged region of a horizontal cold plate[J]. Micromachines, 2022, 13: 1906.
|
3 |
Zhang L, Song M J, Chao C Y H, et al. An experimental study on the dynamic frosting characteristics on the edge zone of a horizontal copper plate under forced convection[J]. International Journal of Heat and Mass Transfer, 2023, 200: 12354.
|
4 |
Lei S W, Song M J, Dang C B, et al. Experimental study on the effect of surface temperature on the frost characteristics of an inverted cold plate under natural convection[J]. Applied Thermal Engineering, 2022, 211: 118470.
|
5 |
Lu M L, Song M J, Pang X L, et al. Modeling study on sessile water droplet during freezing with the consideration of gravity, supercooling, and volume expansion effects[J]. International Journal of Multiphase Flow, 2022, 147: 103909.
|
6 |
苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
|
|
Su W, Lu Z F, Zhang X S. Frost growth dynamics on vertical superhydrophobic fins[J]. CIESC Journal, 2021, 72(S1): 244-256.
|
7 |
Hu W J, Fan J, Song M J, et al. An experimental study on the frosting characteristic and performance of a micro-channel evaporator in an air source heat pump unit[J]. Energy and Buildings, 2020, 224: 110254.
|
8 |
胡斌, 王如竹, 骆名文, 等. 空气源热泵新型除霜技术及智能除霜策略[J]. 制冷技术, 2018, 38(5): 1-6.
|
|
Hu B, Wang R Z, Luo M W, et al. Innovative defrosting technologies and smart control strategies of air-source heat pump[J]. Chinese Journal of Refrigeration Technology, 2018, 38(5): 1-6.
|
9 |
Guo X M, Chen Y G, Wang W H, et al. Experimental study on frost growth and dynamic performance of air source heat pump system[J]. Applied Thermal Engineering, 2008, 28: 2267-2278.
|
10 |
汪谦旭, 刘益才, 梁恒, 等. 融霜下落水对换热器除霜性能的影响[J]. 化工学报, 2021, 72(S1): 356-361.
|
|
Wang J X, Liu Y C, Liang H, et al. Impact of defrost falling water on defrost performance of heat exchanger[J]. CIESC Journal, 2021, 72(S1): 356-361.
|
11 |
Zhang L, Song M J, Deng S M, et al. Frosting mechanism and behaviors on surfaces with simple geometries: a state-of-the-art literature review[J]. Applied Thermal Engineering, 2022, 215: 118984.
|
12 |
雷尚文, 宋孟杰, 张龙, 等. 自然对流下重力对简单冷表面微观动态结霜特性影响的实验研究[J]. 家电科技, 2022, 5: 71-75.
|
|
Lei S W, Song M J, Zhang L, et al. An experimental study of gravity effect on the micro and dynamic frost characteristics on simple cold plate surfaces under natural convection[J]. Journal of Appliance Science & Technology, 2022, 5: 71-75.
|
13 |
Xia Y, Zhong Y, Hrnjak P, et al. Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers[J]. International Journal of Refrigeration, 2006, 29(7): 1066-1079.
|
14 |
Da S D, Melo C, Hermes C, et al. Effect of frost morphology on the thermal-hydraulic performance of fan-supplied tube-fin evaporators[J]. Applied Thermal Engineering, 2017, 111: 1060-1068.
|
15 |
Wang F, Liang C H, Yang M T, et al. Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers[J]. Applied Thermal Engineering, 2015, 75(SI): 1126-1132.
|
16 |
Liu S N, Bai X X, Deng S M, et al. A modeling study on developing the condensing-frosting performance maps for a variable speed air source heat pump[J]. Journal of Building Engineering, 2022, 58: 104990.
|
17 |
Kim K, Lee K. Frosting and defrosting characteristics of surface-treated louvered-fin heat exchangers: effects of fin pitch and experimental conditions[J]. International Journal of Heat and Mass Transfer, 2013, 60: 505-511.
|
18 |
Bai X X, Liu S N, Deng S M, et al. An experimental study on achieving even-frosting for an air source heat pump using a novel dual-fan outdoor coil[J]. Energy and Buildings, 2022, 255: 111695.
|
19 |
Padhmanabhan S, Fisher D, Cremaschi L, et al. Modeling non-uniform frost growth on a fin-and-tube heat exchanger[J]. International Journal of Refrigeration, 2011, 34(8): 2018-2030.
|
20 |
Zhang L, Jiang Y Q, Dong J K, et al. An experimental study on the effects of frosting conditions on frost distribution and growth on finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 128: 748-761.
|
21 |
Zhang L, Jiang Y Q, Dong J K, et al. A comparative study of frosting behavior on finned tube heat exchanger under different fan control modes[J]. Applied Thermal Engineering, 2019, 160: 114063.
|
22 |
Zhang L, Jiang Y Q, Dong J K, et al. An experimental study of frost distribution and growth on finned tube heat exchangers used in air source heat pump units[J]. Applied Thermal Engineering, 2018, 132: 38-51.
|
23 |
El Cheikh A, Jacobi A. A mathematical model for frost growth and densification on flat surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 77: 604-611.
|
24 |
Wang W, Guo Q C, Lu W P, et al. A generalized simple model for predicting frost growth on cold flat plate[J]. International Journal of Refrigeration, 2012, 35: 475-486.
|