化工学报 ›› 2022, Vol. 73 ›› Issue (5): 1986-1994.DOI: 10.11949/0438-1157.20211203
收稿日期:
2021-08-20
修回日期:
2022-03-10
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
王烨
作者简介:
王烨(1972—),男,博士,教授, 基金资助:
Ye WANG1,2(),Xinyue ZHU1,Zhendong SUN1
Received:
2021-08-20
Revised:
2022-03-10
Online:
2022-05-05
Published:
2022-05-24
Contact:
Ye WANG
摘要:
为了提高正弦波翅片扁管管翅式换热器的数值设计效率,以FVM (finite volume method,有限体积法)的计算结果作为样本数据构建POD降阶模型,研究换热器空气侧的流动与传热特性。结果表明:单参数和双参数变化时POD降阶模型重构的温度场与FVM计算结果的偏差集中表现在正弦波翅片表面区域,且沿主流方向呈减小趋势,2种方法所得速度分布的差异主要集中在主流区域。随着变量参数个数的增多,POD降阶模型的计算精度及计算效率均有所降低。POD降阶模型重构的物理场与FVM结果间的平均相对偏差最大值为2.921%,平均计算速度比传统FVM计算速度最大提高了11752倍。
中图分类号:
王烨, 朱欣悦, 孙振东. 基于POD降阶模型的正弦波翅片扁管管翅式换热器流动与传热特性分析[J]. 化工学报, 2022, 73(5): 1986-1994.
Ye WANG, Xinyue ZHU, Zhendong SUN. Flow and heat transfer characteristics analysis of flat tube-bank-fin heat exchanger with sine wave fin based on POD reduced-order model[J]. CIESC Journal, 2022, 73(5): 1986-1994.
名称 | 符号 | 数值/mm | 名称 | 符号 | 数值/mm |
---|---|---|---|---|---|
横向管间距 | S1 | 35/40/45 | 纵向管间距 | S2 | 55 |
扁管宽度 | a | 6.3 | 扁管长度 | b | 46.3 |
翅片间距 | Tp | 4/5/6 | 正弦波波长 | W | 16.43/32.86 |
正弦波波幅 | A | 1/2 |
表1 换热单元几何尺寸
Table 1 Geometry size of heat exchanger unit
名称 | 符号 | 数值/mm | 名称 | 符号 | 数值/mm |
---|---|---|---|---|---|
横向管间距 | S1 | 35/40/45 | 纵向管间距 | S2 | 55 |
扁管宽度 | a | 6.3 | 扁管长度 | b | 46.3 |
翅片间距 | Tp | 4/5/6 | 正弦波波长 | W | 16.43/32.86 |
正弦波波幅 | A | 1/2 |
参数名称 | 单参数 | 双参数 | 三参数 |
---|---|---|---|
Rea | R | R | R |
Tp/mm | 6 | T | T |
S1/mm | 35 | 45 | S |
样本数 | 10 | 30 | 120 |
表2 样本参数变化
Table 2 Sample parameters
参数名称 | 单参数 | 双参数 | 三参数 |
---|---|---|---|
Rea | R | R | R |
Tp/mm | 6 | T | T |
S1/mm | 35 | 45 | S |
样本数 | 10 | 30 | 120 |
项目 | 温度场 | 速度场 | |||
---|---|---|---|---|---|
结构1 | 结构2 | 结构1 | 结构2 | ||
单参数 | 6 | 7 | 7 | 8 | |
双参数 | 15 | 21 | 22 | 24 | |
三参数 | 80 | 80 | 90 | 90 |
表3 基函数组数的选取
Table 3 Selection of the basis function numbers
项目 | 温度场 | 速度场 | |||
---|---|---|---|---|---|
结构1 | 结构2 | 结构1 | 结构2 | ||
单参数 | 6 | 7 | 7 | 8 | |
双参数 | 15 | 21 | 22 | 24 | |
三参数 | 80 | 80 | 90 | 90 |
Rea | Tp/mm | S1/mm | 网格数 | 壁面平均Nu |
---|---|---|---|---|
800 | 6 | 40 | 245628 | 17.61 |
359187 | 16.75 | |||
441561 | 16.81 |
表4 网格独立性验证
Table 4 Grid independence verification
Rea | Tp/mm | S1/mm | 网格数 | 壁面平均Nu |
---|---|---|---|---|
800 | 6 | 40 | 245628 | 17.61 |
359187 | 16.75 | |||
441561 | 16.81 |
翅片结构 | 参数变化情况 | FVM平均 计算耗时/s | POD平均 重构耗时/s | ||
---|---|---|---|---|---|
温度场/速度场 | 温度场 | 速度场 | |||
A=1 mm, W=16.43 mm | 单参数 | 21620 | 2.41 | 2.32 | |
双参数 | 7.15 | 6.91 | |||
三参数 | 38.52 | 36.97 | |||
A=2 mm, W=32.86 mm | 单参数 | 22094 | 1.88 | 2.34 | |
双参数 | 8.06 | 7.99 | |||
三参数 | 35.74 | 34.69 |
表5 两种方法平均计算耗时对比
Table 5 Comparison of average calculation time between the two methods
翅片结构 | 参数变化情况 | FVM平均 计算耗时/s | POD平均 重构耗时/s | ||
---|---|---|---|---|---|
温度场/速度场 | 温度场 | 速度场 | |||
A=1 mm, W=16.43 mm | 单参数 | 21620 | 2.41 | 2.32 | |
双参数 | 7.15 | 6.91 | |||
三参数 | 38.52 | 36.97 | |||
A=2 mm, W=32.86 mm | 单参数 | 22094 | 1.88 | 2.34 | |
双参数 | 8.06 | 7.99 | |||
三参数 | 35.74 | 34.69 |
工况变量 | 参数值和平均相对偏差/% | |
---|---|---|
S1/mm | 37.5 | 42.5 |
Tp/mm | 4.5 | |
Rea | 1250 | |
A=1 mm,W=16.43 mm | 0.937 | 1.145 |
A=2 mm,W=32.86 mm | 1.257 | 1.470 |
表6 两种方法所得温度场偏差对比(三参数)
Table 6 Comparison of temperature field deviation obtained by two methods (three parameters)
工况变量 | 参数值和平均相对偏差/% | |
---|---|---|
S1/mm | 37.5 | 42.5 |
Tp/mm | 4.5 | |
Rea | 1250 | |
A=1 mm,W=16.43 mm | 0.937 | 1.145 |
A=2 mm,W=32.86 mm | 1.257 | 1.470 |
工况变量 | 参数值和平均相对偏差/% | |
---|---|---|
S1/mm | 37.5 | 42.5 |
Tp/mm | 4.5 | |
Rea | 1250 | |
A=1 mm,W=16.43 mm | 1.860 | 1.741 |
A=2 mm,W=32.86 mm | 2.705 | 2.921 |
表7 两种方法所得速度场偏差对比(三参数)
Table 7 Comparison of velocity field deviation obtained by two methods (three parameters)
工况变量 | 参数值和平均相对偏差/% | |
---|---|---|
S1/mm | 37.5 | 42.5 |
Tp/mm | 4.5 | |
Rea | 1250 | |
A=1 mm,W=16.43 mm | 1.860 | 1.741 |
A=2 mm,W=32.86 mm | 2.705 | 2.921 |
1 | Wang Y, Sun S Y, Yu B. Acceleration of gas flow simulations in dual-continuum porous media based on the mass-conservation POD method[J]. Energies, 2017, 10(9): 1380. |
2 | Huang J Q, Zhao J N, Cai W W. Compressing convolutional neural networks using POD for the reconstruction of nonlinear tomographic absorption spectroscopy[J]. Computer Physics Communications, 2019, 241: 33-39. |
3 | Mahmood T, Xie Z H, Jia B H, et al. A soil moisture data assimilation system for Pakistan using PODEn4DVar and CLM4.5[J]. Journal of Meteorological Research, 2019, 33(6): 1182-1193. |
4 | Huayamave V, Ceballos A, Barriento C, et al. RBF-trained POD-accelerated CFD analysis of wind loads on PV systems[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(3): 660-673. |
5 | 江建华. 三棱柱绕流流场特性实验研究[D]. 厦门: 厦门大学, 2017. |
Jiang J H. Experimental study on flow characteristics around a triangular prism[D]. Xiamen: Xiamen University, 2017. | |
6 | Kaffel A, Moureh J, Harion J L, et al. TR-PIV measurements and POD analysis of the plane wall jet subjected to lateral perturbation[J]. Experimental Thermal and Fluid Science, 2016, 77: 71-90. |
7 | 王掩刚, 陈俊旭, 先松川. 基于POD方法的二维方柱低雷诺数绕流流场分析研究[J]. 西北工业大学学报, 2014, 32(4): 612-617. |
Wang Y G, Chen J X, Xian S C. Analysis of square cylinder unsteady flow at low Reynolds number with POD method[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 612-617. | |
8 | 郭广强, 张人会, 陈学炳, 等. 基于POD模态分解的液环泵瞬态气液两相流分析[J]. 工程热物理学报, 2021, 42(2): 349-356. |
Guo G Q, Zhang R H, Chen X B, et al. Analysis of transient gas-liquid two-phase flow in liquid-ring pump based on POD modal decomposition[J]. Journal of Engineering Thermophysics, 2021, 42(2): 349-356. | |
9 | 沙正道. 基于本征正交分解技术的温室环境低维建模与快速优化[D]. 镇江: 江苏大学, 2020. |
Sha Z D. Low-dimensional modeling and fast optimization for greenhouse environment based on proper orthogonal decomposition[D]. Zhenjiang: Jiangsu University, 2020. | |
10 | 芮庆. 基于本征正交分解与人工智能的快速温度分布预测和控制策略研究[D]. 上海: 上海交通大学, 2019. |
Rui Q. A study on agile temperature distribution prediction and control strategy based on proper orthogonal decomposition method[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
11 | 赵朋龙, 陈耀慧, 董刚, 等. 基于本征正交分解的湍流边界层中条带结构实验研究[J]. 南京理工大学学报, 2019, 43(6): 752-758. |
Zhao P L, Chen Y H, Dong G, et al. Experimental study on streaky structures in turbulent boundary layer based on POD[J]. Journal of Nanjing University of Science and Technology, 2019, 43(6): 752-758. | |
12 | 陈槐, 陈启刚, 苗蔚, 等. Reynolds数对方腔流谱结构的影响[J]. 清华大学学报(自然科学版), 2014, 54(8): 1031-1037. |
Chen H, Chen Q G, Miao W, et al. Influence of Reynolds numbers on spectral structures in cavity flows[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(8): 1031-1037. | |
13 | 张济民. 湍流有旋流冷态流场及扩散火焰的大涡模拟[D]. 合肥: 中国科学技术大学, 2013. |
Zhang J M. Large eddy simulation of turbulent non-reactive swirling flow and diffusion flames[D]. Hefei: University of Science and Technology of China, 2013. | |
14 | 秦文瑾, 齐观超, 汪涛, 等. 本征正交分解在发动机缸内流场拟序结构研究中的应用[J]. 汽车工程, 2019, 41(9): 998-1005. |
Qin W J, Qi G C, Wang T, et al. The application of proper orthogonal decomposition in the research of in-cylinder flow field coherent structure[J]. Automotive Engineering, 2019, 41(9): 998-1005. | |
15 | 冯俞楷. POD降维算法在传热与流动数值模拟中的应用[D]. 北京: 华北电力大学, 2017. |
Feng Y K. Application of POD reduced-order algorithm on heat transfer and flow simulation[D]. Beijing: North China Electric Power University, 2017. | |
16 | Katzenmeier L, Vidy C, Breitsamter C. Using a proper orthogonal decomposition representation of the aerodynamic forces for stochastic buffeting prediction[J]. Journal of Fluids and Structures, 2020, 99: 103178. |
17 | Hijazi S, Stabile G, Mola A, et al. Data-driven POD-Galerkin reduced order model for turbulent flows[J]. Journal of Computational Physics, 2020, 416: 109513. |
18 | Busto S, Stabile G, Rozza G, et al. POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver[J]. Computers & Mathematics with Applications, 2020, 79(2): 256-273. |
19 | 康伟, 代向艳, 刘凝. 低速翼型绕流的多模态耦合与流动稳定性研究[J]. 西北工业大学学报, 2015, 33(3): 382-387. |
Kang W, Dai X Y, Liu N. Multi-modal interaction and flow instability of flow around an airfoil at low Reynolds number[J]. Journal of Northwestern Polytechnical University, 2015, 33(3): 382-387. | |
20 | 李波, 龚春林, 粟华, 等. 本征正交分解在翼型气动优化中的应用研究[J]. 上海航天, 2017, 34(5): 117-123. |
Li B, Gong C L, Su H, et al. Research and application on proper orthogonal decomposition in aerodynamic optimization of airfoil[J]. Aerospace Shanghai, 2017, 34(5): 117-123. | |
21 | Demo N, Tezzele M, Rozza G. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces[J]. Comptes Rendus Mécanique, 2019, 347(11): 873-881. |
22 | 兰艾青, 王志恒, 于洪石, 等. 合成射流激励位置对控制翼型大攻角分离流动影响的数值研究[J]. 西安交通大学学报, 2016, 50(7): 110-117. |
Lan A Q, Wang Z H, Yu H S, et al. Numerical investigation for influence of synthetic jet actuation location on airfoil flow separation control at large attack angle[J]. Journal of Xi'an Jiaotong University, 2016, 50(7): 110-117. | |
23 | 丁鹏, 陶文铨. 管翅式换热器流动和换热的低阶模型模拟[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 137-140. |
Ding P, Tao W Q. Reduced order modeling of fluid flow and heat transfer in tube-fin heat exchanger[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 137-140. | |
24 | 王烨, 王艺, 胡文婷, 等. POD方法在扁管管翅式换热器研究中的应用[J]. 计算物理, 2018, 35(5): 587-596. |
Wang Y, Wang Y, Hu W T, et al. Application of POD reduced-order model in heat transfer performance of flat tube bank fin heat exchanger[J]. Chinese Journal of Computational Physics, 2018, 35(5): 587-596. | |
25 | 胡文婷. 基于POD方法的扁管管翅式换热器换热数值模拟[D]. 兰州: 兰州交通大学, 2017. |
Hu W T. Numerical simulation of flat tube fin heat exchanger based on POD method[D]. Lanzhou: Lanzhou Jiaotong University, 2017. | |
26 | 王烨, 孙振东, 王瑞君, 等. 不同边界条件下管翅式换热器流动与传热性能的POD分析[J]. 化工学报, 2020, 71(11): 5150-5158. |
Wang Y, Sun Z D, Wang R J, et al. POD analysis of flow and heat transfer performance of tube fin heat exchanger on different boundary conditions[J]. CIESC Journal, 2020, 71(11): 5150-5158. | |
27 | 夏昕彤. 涡产生器式扁管管翅式换热器传热性能的POD分析[D]. 兰州: 兰州交通大学, 2019. |
Xia X T. Analysis of heat transfer performance of flat tube-bank-fin heat exchanger with vortex generator using POD[D]. Lanzhou: Lanzhou Jiaotong University, 2019. | |
28 | 鲁红钰. 不同翼型涡产生器扁管管翅式换热器流动与传热性能的POD分析[D]. 兰州: 兰州交通大学, 2020. |
Lu H Y. POD analysis of flow and heat transfer performances of flat tube-bank-fin heat exchangers with different wing vortex generators[D]. Lanzhou: Lanzhou Jiaotong University, 2020. | |
29 | 王瑞君. 翅片双面带涡产生器的扁管管翅式换热器流动与传热性能的POD分析[D]. 兰州: 兰州交通大学, 2020. |
Wang R J. Analysis of flow and heat transfer performance of flat tube-bank-fin heat exchanger with vortex generators on both sides of fin using POD[D]. Lanzhou: Lanzhou Jiaotong University, 2020. | |
30 | Kim N H, Lee K J, Jeong Y B. Airside performance of oval tube heat exchangers having sine wave fins under wet condition[J]. Applied Thermal Engineering, 2014, 66(1/2): 580-589. |
31 | 王烨, 王良璧. 翅片材料对扁管管翅式换热器耦合传热特性影响[J]. 应用基础与工程科学学报, 2017, 25(4): 824-834. |
Wang Y, Wang L B. Influence of fin material on the conjugate heat transfer characteristics of flat tube bank fin heat exchanger[J]. Journal of Basic Science and Engineering, 2017, 25(4): 824-834. | |
32 | 宇波. 流动与传热数值计算: 若干问题的研究与探讨[M]. 北京: 科学出版社, 2015. |
Yu B. Numerical Calculation of Flow and Heat Transfer: Research and Discussion on Several Issues[M]. Beijing: Science Press, 2015. | |
33 | Dong J Q, Su L, Chen Q, et al. Experimental study on thermal-hydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger[J]. Applied Thermal Engineering, 2013, 51(1/2): 32-39. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||