化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4433-4444.DOI: 10.11949/0438-1157.20230958
刘壮壮1(), 鞠然2, 刘崇涛2, 宋建超2, 李洋洋1, 吴厚凯2, 李同2(
), 陶秀萍2(
)
收稿日期:
2023-09-14
修回日期:
2023-10-16
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
李同,陶秀萍
作者简介:
刘壮壮(1998—),男,硕士研究生,liu17861521711@163.com
基金资助:
Zhuangzhuang LIU1(), Ran JU2, Chongtao LIU2, Jianchao SONG2, Yangyang LI1, Houkai WU2, Tong LI2(
), Xiuping TAO2(
)
Received:
2023-09-14
Revised:
2023-10-16
Online:
2023-11-25
Published:
2024-01-22
Contact:
Tong LI, Xiuping TAO
摘要:
针对膜生物反应器(membrane bioreactor, MBR)处理污水时存在脱氮效果差、运行能耗高和膜污染严重问题以及微生物燃料电池(microbial fuel cell, MFC)存在出水质量差、所产电能未被有效利用的技术缺陷,电化学膜生物反应器(electrochemistry membrane bioreactor,EMBR)耦合MBR和MFC处理技术,可弥补两者技术缺点,能够实现高效去除污染物的同时减缓膜污染,具有广阔的应用前景。根据EMBR结构特点进行分类;从组成材料选取和运行参数优化角度重点阐述提升EMBR污水处理性能的策略;并从污染物去除、产电性能和膜污染减缓方面详细阐述了EMBR在污水处理中的研究现状;最后指出EMBR处理污水存在的问题及不足,并从新材料的开发与使用、装置规模、膜污染减缓机制、微生物群落结构组成及代谢机理等方面提出建议和展望,以期为EMBR处理技术实现规模化应用提供科学依据。
中图分类号:
刘壮壮, 鞠然, 刘崇涛, 宋建超, 李洋洋, 吴厚凯, 李同, 陶秀萍. 电化学膜生物反应器处理污水性能提升策略及研究现状[J]. 化工学报, 2023, 74(11): 4433-4444.
Zhuangzhuang LIU, Ran JU, Chongtao LIU, Jianchao SONG, Yangyang LI, Houkai WU, Tong LI, Xiuping TAO. Strategies for performance enhancement of electrochemical membrane bioreactors for wastewater treatment and current research status[J]. CIESC Journal, 2023, 74(11): 4433-4444.
类型 | 体积/L | 水力停留时间/h | 进水浓度/(mg·L-1) | 污染物去除率/% | 产电性能 | 减轻膜污染 | 文献 |
---|---|---|---|---|---|---|---|
分离式 | MFC:0.2 MBR:8 | 10 | COD:436 NH | COD:92 NH | 电压:0.43 V MPD:1.02 W·m-3 CE:5.9% | 否 | [ |
分离式 | MFC:0.9 MBR:6 | 8 | COD:287 | COD:87 | 电压:0.52 V MPD:2.57 W·m-3 CE:8.56% | 是 | [ |
分离式 | MFC:2.2 MBR:17 | 8 | COD:368 NH | COD:96 NH | 电压:0.74 V MPD:0.21 W·m-3 CE:10% | 是 | [ |
分离式 | MFC:1.4 MBR:1.1 | 14 | COD:2066 NH TN:38 | COD:96 NH TN:87 | 电压:0.66 V MPD:0.22 W·m-3 | 否 | [ |
纯膜型 | 2.08 | 8.6 | COD:400 | COD:90 | 电压:0.65 V MDP:5.96 W·m-3 CE:1.4% | 否 | [ |
纯膜型 | 1.4 | 10 | COD:305 NH TN:52 | COD:88 NH TN:69 | 电压:0.24 V MPD:0.79 W·m-3 | 是 | [ |
纯膜型 | 12.24 | 8.2 | COD:420 NH TN:33 | COD:95 NH TN:36 | 电压:0.15 V MPD:2.18 W·m-3 CE:1.9% | 是 | [ |
纯膜型 | 55 | 15.3 | COD:408 TN:53 | COD:97 TN:78 | MPD:2.15 W·m-3 CE:0.24% | 否 | [ |
膜阴极型 | 2.5 | 2.5 | COD:283 NH | COD:92 NH | 电压:0.25 V MPD:4.35 W·m-3 CE:8.2% | 是 | [ |
膜阴极型 | 2.5 | 3.6 | COD:283 NH | COD:93.7 NH | 电压:0.52 V MPD:4.34 W·m-3 CE:0.9% | 是 | [ |
膜阴极型 | 3.9 | 12.9 | COD:550 NH | COD:90 NH | 电压:0.5 V MPD:1.36 W·m-3 CE:7% | 是 | [ |
膜阴极型 | 12.8 | 12.7 | COD:650 NH TN:37 | COD:93 NH TN:74 | 电压:0.47 V MPD:0.56 W·m-3 CE:1% | 是 | [ |
膜阴极型 | 6.48 | 24 | COD:380 TN:40 | COD:96 TN:63 | 电压:0.5 V MPD:0.3 W·m-3 CE:1.5% | 是 | [ |
膜空气阴极型 | 0.04 | 48 | COD:1080 NH | COD:97 NH | 电压:0.3 V MPD:6.8 W·m-3 CE:8.5% | 是 | [ |
膜空气阴极型 | 0.12 | 14.5 | COD:292 NH | COD:89 NH | 电压:0.79 V MPD:7.4 W·m-3 CE:36% | 是 | [ |
膜空气阴极型 | 0.028 | 68.3 | COD:400 NH TN:58 | COD:97 NH TN:94 | 电压:0.22 V MPD:8.75 W·m-3 CE:25.6% | 是 | [ |
表1 EMBR对污水中污染物去除效果、产电性能和减缓膜污染情况
Table 1 Effectiveness of EMBR in removing pollutants from wastewater, electricity generation performance and membrane fouling situation
类型 | 体积/L | 水力停留时间/h | 进水浓度/(mg·L-1) | 污染物去除率/% | 产电性能 | 减轻膜污染 | 文献 |
---|---|---|---|---|---|---|---|
分离式 | MFC:0.2 MBR:8 | 10 | COD:436 NH | COD:92 NH | 电压:0.43 V MPD:1.02 W·m-3 CE:5.9% | 否 | [ |
分离式 | MFC:0.9 MBR:6 | 8 | COD:287 | COD:87 | 电压:0.52 V MPD:2.57 W·m-3 CE:8.56% | 是 | [ |
分离式 | MFC:2.2 MBR:17 | 8 | COD:368 NH | COD:96 NH | 电压:0.74 V MPD:0.21 W·m-3 CE:10% | 是 | [ |
分离式 | MFC:1.4 MBR:1.1 | 14 | COD:2066 NH TN:38 | COD:96 NH TN:87 | 电压:0.66 V MPD:0.22 W·m-3 | 否 | [ |
纯膜型 | 2.08 | 8.6 | COD:400 | COD:90 | 电压:0.65 V MDP:5.96 W·m-3 CE:1.4% | 否 | [ |
纯膜型 | 1.4 | 10 | COD:305 NH TN:52 | COD:88 NH TN:69 | 电压:0.24 V MPD:0.79 W·m-3 | 是 | [ |
纯膜型 | 12.24 | 8.2 | COD:420 NH TN:33 | COD:95 NH TN:36 | 电压:0.15 V MPD:2.18 W·m-3 CE:1.9% | 是 | [ |
纯膜型 | 55 | 15.3 | COD:408 TN:53 | COD:97 TN:78 | MPD:2.15 W·m-3 CE:0.24% | 否 | [ |
膜阴极型 | 2.5 | 2.5 | COD:283 NH | COD:92 NH | 电压:0.25 V MPD:4.35 W·m-3 CE:8.2% | 是 | [ |
膜阴极型 | 2.5 | 3.6 | COD:283 NH | COD:93.7 NH | 电压:0.52 V MPD:4.34 W·m-3 CE:0.9% | 是 | [ |
膜阴极型 | 3.9 | 12.9 | COD:550 NH | COD:90 NH | 电压:0.5 V MPD:1.36 W·m-3 CE:7% | 是 | [ |
膜阴极型 | 12.8 | 12.7 | COD:650 NH TN:37 | COD:93 NH TN:74 | 电压:0.47 V MPD:0.56 W·m-3 CE:1% | 是 | [ |
膜阴极型 | 6.48 | 24 | COD:380 TN:40 | COD:96 TN:63 | 电压:0.5 V MPD:0.3 W·m-3 CE:1.5% | 是 | [ |
膜空气阴极型 | 0.04 | 48 | COD:1080 NH | COD:97 NH | 电压:0.3 V MPD:6.8 W·m-3 CE:8.5% | 是 | [ |
膜空气阴极型 | 0.12 | 14.5 | COD:292 NH | COD:89 NH | 电压:0.79 V MPD:7.4 W·m-3 CE:36% | 是 | [ |
膜空气阴极型 | 0.028 | 68.3 | COD:400 NH TN:58 | COD:97 NH TN:94 | 电压:0.22 V MPD:8.75 W·m-3 CE:25.6% | 是 | [ |
1 | 中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL]. (2020-06-08) [2021-12-07]. . |
Ministry of Ecology and Environment of the People's Republic of China, National Bureau of Statistics, Ministry of Agriculture and Rural Affairs of the People's Republic of China. Bulletin of the Second National Pollution Source Census[EB/OL]. (2020-06-08) [2021-12-07]. . | |
2 | Yang Y, Li B, Li T, et al. A review of treatment technologies for acid mine drainage and sustainability assessment[J]. Journal of Water Process Engineering, 2023, 55: 104213. |
3 | Yang W B, Cicek N, Ilg J. State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America[J]. Journal of Membrane Science, 2006, 270(1/2): 201-211. |
4 | Zheng Y, Zhang W X, Tang B, et al. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): pore blocking model and membrane cleaning[J]. Bioresource Technology, 2018, 250: 398-405. |
5 | Akamatsu K, Lu W, Sugawara T, et al. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field[J]. Water Research, 2010, 44(3): 825-830. |
6 | Sarkar B, Pal S, Ghosh T B, et al. A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition[J]. Journal of Membrane Science, 2008, 311(1/2): 112-120. |
7 | Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
8 | Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies, 2010, 3(5): 899-919. |
9 | Wang Y K, Sheng G P, Li W W, et al. Development of a novel bioelectrochemical membrane reactor for wastewater treatment[J]. Environmental Science & Technology, 2011, 45(21): 9256-9261. |
10 | Wang J, Bi F H, Ngo H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. |
11 | 应贤斌, 黄利杰, 汪锐, 等. 基于微生物燃料电池的新型膜生物反应器研究进展[J]. 化工进展, 2019, 38(12): 5557-5564. |
Ying X B, Huang L J, Wang R, et al. Research progress of novel membrane bioreactor based on microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5557-5564. | |
12 | Wang Y P, Liu X W, Li W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98: 230-235. |
13 | Ma J X, Wang Z W, He D, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. |
14 | Cheng B A, Wang J, Liu W B, et al. Membrane fouling reduction in a cost-effective integrated system of microbial fuel cell and membrane bioreactor[J]. Water Science and Technology, 2017, 76(3): 653-661. |
15 | Modin O, Fukushi K, Rabaey K, et al. Bioelectrochemical hydrogen peroxide production—an opportunity for sustainable mitigation of membrane bioreactor fouling[J]. Proceedings of the Water Environment Federation, 2010(7): 309-321. |
16 | Gao C F, Liu L F, Yang F L. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment[J]. Bioresource Technology, 2017, 238: 472-483. |
17 | Zhao F, Harnisch F, Schröder U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(17): 5193-5199. |
18 | Huang L H, Li X F, Ren Y P, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances, 2017, 7(34): 20824-20832. |
19 | Park Y, Park S, Nguyen V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal, 2017, 316: 673-679. |
20 | 张政, 侯彬, 高广超. MFC-MBR 耦合系统研究进展[J]. 现代化工, 2019, 39(2): 46-50. |
Zhang Z, Hou B, Gao G C. Research progress of MFC-MBR coupling system[J]. Modern Chemical Industry, 2019, 39(2): 46-50. | |
21 | Lv Z S, Chen Y F, Wei H C, et al. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application[J]. Electrochimica Acta, 2013, 111: 366-373. |
22 | Malaeb L, Katuri K P, Logan B E, et al. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment[J]. Environmental Science & Technology, 2013, 47(20): 11821-11828. |
23 | Tian Y, Li H, Li L P, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors and Bioelectronics, 2015, 64: 189-195. |
24 | Wang Y K, Li W W, Sheng G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. |
25 | Li Y H, Liu L F, Yang F L, et al. Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment[J]. Journal of Membrane Science, 2015, 484: 27-34. |
26 | Liu J D, Liu L F, Gao B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430: 196-202. |
27 | Gao C F, Liu L F, Yang F L. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery[J]. Bioresource Technology, 2018, 249: 24-34. |
28 | Wang L L, Gu X L, Zhao L Y, et al. ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries[J]. Electrochimica Acta, 2019, 295: 107-112. |
29 | Pu K B, Ma Q, Cai W F, et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell[J]. Biochemical Engineering Journal, 2018, 132: 255-261. |
30 | Baudler A, Schmidt I, Langner M, et al. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(7): 2048-2055. |
31 | Zhou X W, Chen X F, Li H Y, et al. Surface oxygen-rich titanium as anode for high performance microbial fuel cell[J]. Electrochimica Acta, 2016, 209: 582-590. |
32 | Mardanpour M M, Yaghmaei S. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode[J]. Biosensors and Bioelectronics, 2016, 79: 327-333. |
33 | Yang W L, Deng Z J, Wang Y J, et al. Porous boron-doped diamond for efficient electrocatalytic elimination of azo dye orange G[J]. Separation and Purification Technology, 2022, 293: 121100. |
34 | Mohamed H O, Obaid M, Poo K M, et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349: 800-807. |
35 | Du Y, Ma F X, Xu C Y, et al. Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells[J]. Nano Energy, 2019, 61: 533-539. |
36 | Liu W F, Zhou Z H, Li Z, et al. Cobalt phosphide embedded N-doped carbon nanopolyhedral as an efficient cathode electrocatalyst in microbial fuel cells[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104582. |
37 | Wang Y, Zhong K Q, Li H, et al. Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: effective oxygen reduction catalysis and inhibition of biofilm formation[J]. Journal of Power Sources, 2021, 485: 229273. |
38 | Li Y J, Liu L F, Liu J D, et al. PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (alizarin red’s) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system[J]. Desalination, 2014, 349: 94-101. |
39 | Xu L, Zhao Y Q, Tang C, et al. Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell[J]. Journal of Environmental Management, 2018, 207: 116-123. |
40 | Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39(11): 4317-4320. |
41 | Santos A, Ma W, Judd S J. Membrane bioreactors: two decades of research and implementation[J]. Desalination, 2011, 273(1): 148-154. |
42 | Orhon D. Evolution of the activated sludge process: the first 50 years[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 608-640. |
43 | Zhou G W, Zhou Y H, Zhou G Q, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. |
44 | Wang Y K, Sheng G P, Shi B J, et al. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment[J]. Scientific Reports, 2013, 3(1): 1-6. |
45 | Liu J D, Tian C, Jia X L, et al. The brewery wastewater treatment and membrane fouling mitigation strategies in anaerobic baffled anaerobic/aerobic membrane bioreactor[J]. Biochemical Engineering Journal, 2017, 127: 53-59. |
46 | Li J, Luo S, He Z. Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment[J]. Separation and Purification Technology, 2016, 169: 241-246. |
47 | 刘晓宇. 曝气和微电场相互作用对MBR膜污染缓解机理的研究[D]. 太原: 中北大学, 2022. |
Liu X Y. Study on membrane fouling mitigation mechanism of MBR by interaction aeration and micro-electric field[D]. Taiyuan: North University of China, 2022. | |
48 | Meng F G, Yang F L, Shi B Q, et al. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities[J]. Separation and Purification Technology, 2008, 59(1): 91-100. |
49 | González del Campo A, Cañizares P, Lobato J, et al. Effects of external resistance on microbial fuel cell’s performance[M]//The Handbook of Environmental Chemistry. Cham: Springer International Publishing, 2014: 175-197. |
50 | Pinto R P, Srinivasan B, Guiot S R, et al. The effect of real-time external resistance optimization on microbial fuel cell performance[J]. Water Research, 2011, 45(4): 1571-1578. |
51 | Zhang P Y, Liu Z L. Experimental study of the microbial fuel cell internal resistance[J]. Journal of Power Sources, 2010, 195(24): 8013-8018. |
52 | Corbella C, Puigagut J. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: influence of anode material and external resistance[J]. Science of the Total Environment, 2018, 631/632: 1406-1414. |
53 | Su X Y, Tian Y, Sun Z C, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors and Bioelectronics, 2013, 49: 92-98. |
54 | Zhao S, Yun H, Khan A, et al. Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor[J]. Environmental Research, 2022, 204: 112089. |
55 | 迪世靖, 左薇, 王德震, 等. 一体式MFC-好氧MBR运行效果及膜污染特性[J]. 环境工程学报, 2014, 8(4): 1367-1372. |
Di S J, Zuo W, Wang D Z, et al. Performance and membrane fouling characteristics in a membrane bioreactor coupled with microbial fuel cell system[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1367-1372. | |
56 | Xu L, Zhang G Q, Yuan G E, et al. Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system[J]. RSC Advances, 2015, 5(29): 22533-22543. |
57 | 周翔, 吕娜, 李秀芬, 等. Cu-NWs/RGO/PVDF导电微滤膜的制备及其抗污染性能[J]. 环境工程学报, 2022, 16(1): 281-291. |
Zhou X, Lyu N, Li X F, et al. Preparation of Cu-NWs/RGO/PVDF conductive microfiltration membrane and its anti-pollution performance[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 281-291. | |
58 | Yan H J, Saito T, Regan J M. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode[J]. Water Research, 2012, 46(7): 2215-2224. |
59 | Yu J, Park Y, Widyaningsih E, et al. Microbial fuel cells: devices for real wastewater treatment, rather than electricity production[J]. Science of the Total Environment, 2021, 775: 145904. |
60 | Aslam M, Charfi A, Lesage G, et al. Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling[J]. Chemical Engineering Journal, 2017, 307: 897-913. |
61 | Liu L F, Liu J D, Bo G, et al. Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR[J]. Journal of Membrane Science, 2013, 429: 252-258. |
62 | Remmas N, Melidis P, Zerva I, et al. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances[J]. Bioresource Technology, 2017, 238: 48-56. |
63 | Yao M, Ladewig B, Zhang K S. Identification of the change of soluble microbial products on membrane fouling in membrane bioreactor (MBR)[J]. Desalination, 2011, 278(1/2/3): 126-131. |
64 | Dudchenko A V, Rolf J, Russell K, et al. Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468: 1-10. |
65 | Fu L, You S J, Yang F L, et al. Synthesis of hydrogen peroxide in microbial fuel cell[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(5): 715-719. |
66 | Modin O, Fukushi K. Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide[J]. Water Science and Technology, 2012, 66(4): 831-836. |
67 | Rozendal R A, Leone E, Keller J, et al. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system[J]. Electrochemistry Communications, 2009, 11(9): 1752-1755. |
68 | Feng C H, Li F B, Mai H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science & Technology, 2010, 44(5): 1875-1880. |
69 | Fu L, You S J, Zhang G Q, et al. Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell[J]. Chemical Engineering Journal, 2010, 160(1): 164-169. |
70 | Zhuang L, Zhou S G, Yuan Y, et al. A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation[J]. Chemical Engineering Journal, 2010, 163(1/2): 160-163. |
[1] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[2] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[3] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[4] | 齐欣欣, 贾辉, 高菲, 王琦, 尹延梅, 王捷. 基于双侧阵列电极的电阻抗成像原位膜污染监测[J]. 化工学报, 2023, 74(11): 4720-4729. |
[5] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[6] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[7] | 冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945. |
[8] | 唐和礼, 张冰, 黄冬梅, 申渝, 高旭, 时文歆. XDLVO理论在膜污染解析中的应用研究[J]. 化工学报, 2021, 72(3): 1230-1241. |
[9] | 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271. |
[10] | 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193. |
[11] | 刘昌会,黄文博,顾彦龙,饶中浩. 废弃聚苯乙烯塑料在环境与能源中的高值化应用进展[J]. 化工学报, 2020, 71(7): 2956-2972. |
[12] | 赵学辉, 李晓乐, 刘洋, 胡岩, 许青, 张宏伟. KMnO4溶液pH调控对PVDF膜物化性能和污染行为影响[J]. 化工学报, 2020, 71(5): 2401-2412. |
[13] | 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723. |
[14] | 吴降麟, 张朝晖, 王亮, 赵斌, 李腾飞, 陈萌萌. 宽流道反渗透膜元件抗污染性能分析[J]. 化工学报, 2019, 70(4): 1446-1454. |
[15] | 袁子怡, 樊华, 侯得印, 王凯, 王军. 十二烷基硫酸钠对膜蒸馏过程影响[J]. 化工学报, 2019, 70(4): 1455-1463. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 517
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 204
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||