化工学报 ›› 2024, Vol. 75 ›› Issue (2): 575-583.DOI: 10.11949/0438-1157.20231104
盖星宇1(), 岳玉学2, 杨春华1, 张子龙1, 蔡天姿1, 张海丰1, 王柏林1(
), 李小年2(
)
收稿日期:
2023-10-26
修回日期:
2024-01-16
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
王柏林,李小年
作者简介:
盖星宇(2000—),男,硕士研究生,gxy__neepu@163.com
基金资助:
Xingyu GAI1(), Yuxue YUE2, Chunhua YANG1, Zilong ZHANG1, Tianzi CAI1, Haifeng ZHANG1, Bolin WANG1(
), Xiaonian LI2(
)
Received:
2023-10-26
Revised:
2024-01-16
Online:
2024-02-25
Published:
2024-04-10
Contact:
Bolin WANG, Xiaonian LI
摘要:
采用浸渍法制备了Cs/AC和Cu/AC催化剂,并在1,1,2-三氯乙烷的气相脱氯化氢反应中进行了评价。在浸渍过程中,活性炭表面产生高度分散的Cs物种和少量结晶的Cu物种。Cs/AC催化剂具有优异的催化性能,在573 K、1000 h-1的反应条件下,转化率稳定在86.7%。实验和理论计算表明,CsCl物种促进了1,1,2-三氯乙烷的吸附和活化,从而提高了原料转化率。这项工作为探索高效经济地合成偏二氯乙烯提供了一种很有前景的策略。
中图分类号:
盖星宇, 岳玉学, 杨春华, 张子龙, 蔡天姿, 张海丰, 王柏林, 李小年. 碳负载Cs和Cu基催化剂用于1,1,2-三氯乙烷的气相脱氯化氢[J]. 化工学报, 2024, 75(2): 575-583.
Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane[J]. CIESC Journal, 2024, 75(2): 575-583.
Catalyst | Active component loading/%(mass) | |
---|---|---|
Cu/C | Cs/C | |
Cu/AC | 5.03 | 0 |
Cs/AC | 0 | 4.98 |
表1 两种催化剂的ICP值
Table 1 ICP values for two catalysts
Catalyst | Active component loading/%(mass) | |
---|---|---|
Cu/C | Cs/C | |
Cu/AC | 5.03 | 0 |
Cs/AC | 0 | 4.98 |
图1 不同温度对催化剂性能的影响与催化剂活性对比(反应条件:催化剂0.4 g,空速1000 h-1,大气压力0.1 MPa)
Fig.1 Effect of different temperatures on catalyst performance and comparison of catalyst activity (reaction conditions:catalyst 0.4 g, GHSV = 1000 h-1, p = 0.1 MPa)
图2 不同空速对Cu/AC催化活性的影响(反应条件:催化剂0.4 g,大气压力0.1 MPa,温度573 K)
Fig.2 Depicts the effect of testing different GHSV on the catalytic performance of the catalysts (reaction conditions: catalyst 0.4 g, p = 0.1 MPa, T = 573 K)
1 | Kester J E. Vinylidene Chloride (VDC)[M]// Encyclopedia of Toxicology. Amsterdam: Elsevier, 2014: 942-947. |
2 | Chaliha M, Cusack A, Currie M, et al. Effect of packaging materials and storage on major volatile compounds in three Australian native herbs[J]. Journal of Agricultural and Food Chemistry, 2013, 61(24): 5738-5745. |
3 | Choi Y H, Lee W Y. Effect of second metals and Cu content on catalyst performance of Ni-Cu/SiO2 in the hydrodechlorination of 1,1,2-trichloroethane into vinyl chloride monomer[J]. Journal of Molecular Catalysis A: Chemical, 2001, 174(1/2): 193-204. |
4 | Milchert E, Paździoch W. Optimization of dehydrochlorination of waste 1,1,2-trichloroethane to vinylidene chloride[J]. Industrial & Engineering Chemistry Research, 1999, 38(2): 391-395. |
5 | Mochida I, Watanabe H, Fujitsu H, et al. An acid-proof basic catalyst for the selective dehydrochlorination of 1,1,2-trichloroethane[J]. Journal of the Chemical Society, Chemical Communications, 1980(17): 793. |
6 | Adema D M M, Vink I G J. A comparative study of the toxicity of 1,1,2-trichloroethane, dieldrin, pentachlorophenol and 3,4-dichloroaniline for marine and fresh water organisms[J]. Chemosphere, 1981, 10(6): 533-554. |
7 | Mochida I, Yasumoto Y, Fujitsu H, et al. Catalytic dehydrochlorination of 1,1,2-trichloroethane (TCE) into 1,1-dichloroethene (DCE) over cesium nitrate supported on silica gel[J]. Chemistry Letters, 1992, 21(3): 461-464. |
8 | Lee A F, Carr P, Wilson K. Direct observation of extremely low temperature catalytic dehydrochlorination of 1,1,1-trichloroethane over platinum[J]. The Journal of Physical Chemistry B, 2004, 108(39): 14811-14814. |
9 | He Z H, Leung K T. Room-temperature chemisorption and thermal evolution of perchloroethylene and trichloroethylene on Si(1 1 1) 7 × 7: formation of chlorinated vinylene and vinylidene and acetylide adspecies, and thermal etching reactions[J]. Surface Science, 2005, 583(2/3): 179-190. |
10 | Kokubo K, Kitasaka K, Oshima T. Supramolecular triplet photosensitizer. Effects of the cation binding mode on E-Z isomerization of 1,2-dichloroethylene[J]. Organic Letters, 2006, 8(8): 1597-1600. |
11 | Turton D A, Martin D F, Wynne K. Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid-liquid transition or super-Arrhenius relaxation[J]. Physical Chemistry Chemical Physics, 2010, 12(16): 4191-4200. |
12 | Tang C, Jin Y X, Wang X X, et al. Highly selective gas-phase synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane over supported amine catalysts[J]. Chemical Research in Chinese Universities, 2015, 31(5): 787-791. |
13 | Song T Y, Dong Z X, Song J D, et al. Dehydrochlorination of 1,1,2-trichloroethane over SiO2-supported alkali and transition metal catalysts: tunable selectivity controlled by the acid-base properties of the catalysts[J]. Applied Catalysis B: Environmental, 2018, 236: 368-376. |
14 | Tian C, Lu C S, Wang B L, et al. Mesoporous carbon nitride as a basic catalyst in dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethene[J]. RSC Advances, 2015, 5(126): 103829-103833. |
15 | 胡益浩, 宋通洋, 王月娟, 等. Zn/SiO2气相催化裂解1,1,2-三氯乙烷脱HCl: 酸性与失活[J]. 物理化学学报, 2017, 33(5): 1017-1026. |
Hu Y H, Song T Y, Wang Y J, et al. Gas phase dehydrochlorination of 1,1,2-trichloroethane over Zn/SiO2 catalysts: acidity and deactivation[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 1017-1026. | |
16 | Tang C, Jin Y X, Lu J Q, et al. Highly efficient Mg(OH)Cl/SiO2 catalysts for selective dehydrochlorination of 1,1,2-trichloroethane[J]. Applied Catalysis A: General, 2015, 508: 10-15. |
17 | Wang B S, Qin L, Mu T C, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
18 | Xin B W, Hao J C. Imidazolium-based ionic liquids grafted on solid surfaces[J]. Chemical Society Reviews, 2014, 43(20): 7171-7187. |
19 | Zhang Z L, Zuo F M, Cai T Z, et al. Modification of insulating oils and oil-based titanium dioxide nanofluids for transformers: a review[J]. Physical Chemistry Chemical Physics, 2023, 25(34): 22565-22582. |
20 | Goossens K, Lava K, Bielawski C W, et al. Ionic liquid crystals: versatile materials[J]. Chemical Reviews, 2016, 116(8): 4643-4807. |
21 | Zhang P Z, Jiang Z B, Cui Y H, et al. Catalytic performance of ionic liquid for dehydrochlorination reaction: excellent activity and unparalled stability[J]. Applied Catalysis B: Environmental, 2019, 255: 117757. |
22 | Yue Y X, Wang B L, Zhang Y T, et al. Regulation of the liquid-solid interface of Cs catalysts for the synthesis of 1,1-dichloroethylene from 1,1,2-trichloroethane[J]. Applied Surface Science, 2022, 599: 154033. |
23 | Mochida I, Uchino A, Fujitsu H, et al. Catalytic dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethylene over alumina promoted by water[J]. Chemistry Letters, 1975, 4(7): 745-746. |
24 | Martin M, Richard B D H. Splitting-off of hydrogen halide from halogenated hydrocarbons[Z]. U.S.S.R., 1945, 2: 372-379. |
25 | Fujitsu H, Takagi T, Mochida I. Influences of supporting silica gel on the catalytic activity of B-18 crown ether-KCl complex for the selective dehydrochlorination of 1,1,2-trichloroethane[J]. Bulletin of the Chemical Society of Japan, 1985, 58(5): 1589-1590. |
26 | 靳燕霞, 汤岑, 孟秀清, 等. 气相法合成偏二氯乙烯的高稳定CsNO3/SiO2催化剂[J]. 物理化学学报, 2016, 32(2): 510-518. |
Jin Y X, Tang C, Meng X Q, et al. Highly stable CsNO3/SiO2 catalysts for the synthesis of vinylidene chloride using a gaseous phase method[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 510-518. | |
27 | Hussain S, Aneggi E, Briguglio S, et al. Enhanced ibuprofen removal by heterogeneous-Fenton process over Cu/ZrO2 and Fe/ZrO2 catalysts[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103586. |
28 | Wang H Y, Li G Q, Zhang S T, et al. Preparation of Cu-loaded biomass-derived activated carbon catalysts for catalytic wet air oxidation of phenol[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2908-2920. |
29 | El-Deeb H, Nassr A B A A, Bron M. Cu@Pt/CNT catalysts for oxygen reduction prepared by a facile two-step synthesis: chemical vs. electrochemical leaching[J]. Journal of Electroanalytical Chemistry, 2023, 946: 117724. |
30 | Valov P M, Leiman V I. Size effects in the melting and crystallization temperatures of copper chloride nanocrystals in glass[J]. Journal of Experimental and Theoretical Physics Letters, 1997, 66(7): 510-516. |
31 | Ullah R, Bowmaker G A, Laslau C, et al. Synthesis of polyaniline by using CuCl2 as oxidizing agent[J]. Synthetic Metals, 2014, 198: 203-211. |
32 | Espinós J P, Morales J, Barranco A, et al. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. The Journal of Physical Chemistry B, 2002, 106(27): 6921-6929. |
33 | Zhang Z L, Zhang H F, Wang B L, et al. Migration: a neglected potential contribution of HCl-oxidized Au (0)[J]. Molecules, 2023, 28(4): 1600. |
34 | Wang X, Kang Y, Li J, et al. Influence of cerium and cesium promoters on vanadium catalyst for sulfur dioxide oxidation[J]. Korean Journal of Chemical Engineering, 2019, 36(5): 650-659. |
35 | 王正峰, 谢雨杭, 范永春, 等. 活性炭负载Ni-N-C催化剂提升电解碳酸氢盐法拉第效率[J]. 化工学报, 2023, 74(11): 4570-4577. |
Wang Z F, Xie Y H, Fan Y H, et al. Active carbons supported Ni-NC catalysts for enhanced faraday efficiency of electrolytic bicarbonate[J]. CIESC Journal, 2023, 74(11): 4570-4577. |
[1] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[2] | 刘琦, 陈子康, 朴宇, 肖鹏, 葛亚粉, 巩雁军. 烃类催化裂解高选择性制低碳烯烃的分子筛催化剂[J]. 化工学报, 2024, 75(1): 120-137. |
[3] | 张家琳, 徐大为, 高越, 李新刚. 泡沫镍负载CeO2改性CuO催化剂的碳烟燃烧性能研究[J]. 化工学报, 2024, 75(1): 312-321. |
[4] | 孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390. |
[5] | 张强, 王宪飞, 王凯, 骆广生, 路忠凯. 非金属催化剂在环氧化物和环状酸酐共聚中的研究进展[J]. 化工学报, 2024, 75(1): 60-73. |
[6] | 王欣雨, 王永涛, 姚加, 李浩然. 电子顺磁共振技术在化工基础研究中的应用进展[J]. 化工学报, 2024, 75(1): 74-82. |
[7] | 咸国义, 陈立芳, 漆志文. 基于DFT的环己酮肟液相贝克曼重排机理研究[J]. 化工学报, 2024, 75(1): 302-311. |
[8] | 李晓阳, 李东, 陶明磊, 周致富, 张灵怡, 苏力争, 张天宁, 李智, 陈斌. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241. |
[9] | 王雪杰, 崔国庆, 王文涵, 杨扬, 王淙恺, 姜桂元, 徐春明. 电内加热Pt/NPC催化剂高效催化甲基环己烷脱氢反应研究[J]. 化工学报, 2024, 75(1): 292-301. |
[10] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[11] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[12] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[13] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[14] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[15] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||