化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1209-1221.DOI: 10.11949/0438-1157.20231262
杨玉维(), 李敏, 要智颖, 孙沁林, 刘洋, 葛丹(), 孙冰冰
收稿日期:
2023-12-04
修回日期:
2024-03-27
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
葛丹
作者简介:
杨玉维(1999—),女,硕士研究生,yangyuwei@mail.dlut.edu.cn
基金资助:
Yuwei YANG(), Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE(), Bingbing SUN
Received:
2023-12-04
Revised:
2024-03-27
Online:
2024-04-25
Published:
2024-06-06
Contact:
Dan GE
摘要:
类器官是源自人类干细胞、器官特异性祖细胞及分离肿瘤组织的自组装三维多细胞微型器官模型,可在体外重现器官的关键结构特征与生理机能。微流控芯片作为类器官的体外培养平台,为研究细胞在异质群体和微环境中的行为提供机会,因此,成为助力人类器官发育研究、疾病建模及药物筛选的强大工具。基于先进纳米技术构建的药物载体可以显著提升疾病治疗效果,是目前新药物研发和临床治疗的焦点。利用类器官芯片对纳米递送系统的安全性和有效性进行评估,不仅有助于了解药物递送载体与靶点微环境的相互作用机制,科学指导纳米载体的设计;也在患者个性化精准医疗领域具有应用价值。本文讨论了传统二维细胞模型以及动物模型评价纳米药物递送系统的局限性,分析了用类器官芯片作为体外评价平台的优势。在此基础上,总结了近年来类器官芯片在纳米药物递送领域的应用现状与发展方向,并对其前景进行了展望。
中图分类号:
杨玉维, 李敏, 要智颖, 孙沁林, 刘洋, 葛丹, 孙冰冰. 类器官芯片在纳米药物递送系统研究中的应用及前景[J]. 化工学报, 2024, 75(4): 1209-1221.
Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems[J]. CIESC Journal, 2024, 75(4): 1209-1221.
类别 | 代表材料 | 性能 | 主要应用 |
---|---|---|---|
聚合物纳米 载体 | 聚乳酸-羟基乙酸共聚物、聚己内酯、聚乙二醇、壳聚糖 | 聚合物外壳可增加所负载蛋白质和核酸的稳定性,使其免受蛋白酶和核酸酶的降解;可生物降解;生物相容性好 | 体外激活药物释放、靶向递送、光动力疗法、光热疗法 、生物传感、组织成像 |
脂质体纳米 载体 | 磷脂聚合物纳米胶束、脂质体、固体脂质体纳米颗粒 | 可以同时包载水溶性药物和脂溶性药物;具有可修饰性;增强药物靶向性;延长药物作用时间、提高药物稳定性 | 基因递送、光动力疗法、光热疗法、基因疗法、组织工程 |
水凝胶纳米 载体 | DNA-水凝胶、光响应型水凝胶、ATP响应型水凝胶 | 比表面积大;装载效率高;稳定性好;可通过控制水凝胶网格降解、溶胀以及机械变形来实现对药物的控释 | 刺激响应型药物释放、基因递送、组织工程 |
无机纳米 载体 | 金纳米颗粒、二氧化硅纳米颗粒、 氧化铁纳米颗粒 | 合成简单;比表面积大;表面易修饰;具有光热和光动力效应;具有良好的荧光特性 | 荧光生物成像、多光子生物成像、磁引导药物递送、基因治疗 |
表1 几类纳米药物递送载体的性能及应用
Table 1 Performance and applications of several types of nanodrug delivery carriers
类别 | 代表材料 | 性能 | 主要应用 |
---|---|---|---|
聚合物纳米 载体 | 聚乳酸-羟基乙酸共聚物、聚己内酯、聚乙二醇、壳聚糖 | 聚合物外壳可增加所负载蛋白质和核酸的稳定性,使其免受蛋白酶和核酸酶的降解;可生物降解;生物相容性好 | 体外激活药物释放、靶向递送、光动力疗法、光热疗法 、生物传感、组织成像 |
脂质体纳米 载体 | 磷脂聚合物纳米胶束、脂质体、固体脂质体纳米颗粒 | 可以同时包载水溶性药物和脂溶性药物;具有可修饰性;增强药物靶向性;延长药物作用时间、提高药物稳定性 | 基因递送、光动力疗法、光热疗法、基因疗法、组织工程 |
水凝胶纳米 载体 | DNA-水凝胶、光响应型水凝胶、ATP响应型水凝胶 | 比表面积大;装载效率高;稳定性好;可通过控制水凝胶网格降解、溶胀以及机械变形来实现对药物的控释 | 刺激响应型药物释放、基因递送、组织工程 |
无机纳米 载体 | 金纳米颗粒、二氧化硅纳米颗粒、 氧化铁纳米颗粒 | 合成简单;比表面积大;表面易修饰;具有光热和光动力效应;具有良好的荧光特性 | 荧光生物成像、多光子生物成像、磁引导药物递送、基因治疗 |
1 | Liu J Y, Li S Q, Wang J, et al. Application of nano drug delivery system (NDDS) in cancer therapy: a perspective[J]. Recent Patents on Anti-Cancer Drug Discovery, 2022, 18(2): 125-132. |
2 | Sun M C, Xu X L, Lou X F, et al. Recent progress and future directions: the nano-drug delivery system for the treatment of vitiligo[J]. International Journal of Nanomedicine, 2020, 15: 3267-3279. |
3 | Wang C D, Li F S, Zhang T A, et al. Recent advances in anti-multidrug resistance for nano-drug delivery system[J]. Drug Delivery, 2022, 29(1): 1684-1697. |
4 | Zhang Y, Wu Y J, Du H J, et al. Nano-drug delivery systems in oral cancer therapy: recent developments and prospective[J]. Pharmaceutics, 2023, 16(1): 7. |
5 | Mu W W, Chu Q H, Liu Y J, et al. A review on nano-based drug delivery system for cancer chemoimmunotherapy[J]. Nano-Micro Letters, 2020, 12(1): 142. |
6 | Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures—a comparison of different types of cancer cell cultures[J]. Archives of Medical Science, 2018, 14(4): 910-919. |
7 | Bao Y L, Wang L, Pan H T, et al. Animal and organoid models of liver fibrosis[J]. Frontiers in Physiology, 2021, 12: 666138. |
8 | Jiang X J, Ouyang L, Peng Q, et al. Organoids: opportunities and challenges of cancer therapy[J]. Frontiers in Cell and Developmental Biology, 2023, 11: 1232528. |
9 | Wang H, Ning X F, Zhao F, et al. Human organoids-on-chips for biomedical research and applications[J]. Theranostics, 2024, 14(2): 788-818. |
10 | Khan A U, Khan M, Cho M H, et al. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure[J]. Bioprocess and Biosystems Engineering, 2020, 43(8): 1339-1357. |
11 | De Jong W H, Borm P J A. Drug delivery and nanoparticles: applications and hazards[J]. International Journal of Nanomedicine, 2008, 3(2): 133-149. |
12 | Dobrovolskaia M A, McNeil S E. Immunological properties of engineered nanomaterials[J]. Nature Nanotechnology, 2007, 2: 469-478. |
13 | Shi J J, Votruba A R, Farokhzad O C, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications[J]. Nano Letters, 2010, 10(9): 3223-3230. |
14 | Guo Y Y, Ma Y B, Chen X, et al. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments[J]. ACS Nano, 2023, 17(3): 2813-2828. |
15 | Onugwu A L, Nwagwu C S, Onugwu O S, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2023, 354: 465-488. |
16 | Sun B B, Xia T. Nanomaterial-based vaccine adjuvants[J]. Journal of Materials Chemistry B, 2016, 4(33): 5496-5509. |
17 | 高钟镐. 新型药物递送系统技术在药物研发中的应用和展望[J]. 中国药科大学学报, 2023, 54(1): 1-4. |
Gao Z H. Application and prospect of new drug delivery system in drug research and development[J]. Journal of China Pharmaceutical University, 2023, 54(1): 1-4. | |
18 | Chen G Y, Roy I, Yang C H, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chemical Reviews, 2016, 116(5): 2826-2885. |
19 | Tewari A K, Upadhyay S C, Kumar M, et al. Insights on development aspects of polymeric nanocarriers: the translation from bench to clinic[J]. Polymers, 2022, 14(17): 3545. |
20 | Okada M. Chemical syntheses of biodegradable polymers[J]. Progress in Polymer Science, 2002, 27(1): 87-133. |
21 | Wei D S, Sun Y, Zhu H, et al. Stimuli-responsive polymer-based nanosystems for cancer theranostics[J]. ACS Nano, 2023, 17(23): 23223-23261. |
22 | Khan R U, Shao J N, Liao J Y, et al. pH-triggered cancer-targeting polymers: from extracellular accumulation to intracellular release[J]. Nano Research, 2023, 16(4): 5155-5168. |
23 | Nizamov T R, Iliasov A R, Vodopyanov S S, et al. Study of cytotoxicity and internalization of redox-responsive iron oxide nanoparticles on PC-3 and 4T1 cancer cell lines[J]. Pharmaceutics, 2022, 15(1): 127. |
24 | 盛竹君, 徐维平, 徐婷娟, 等. 脂质体药物传输系统的研究新进展[J]. 中国药业, 2015, 24(23):6-9. |
Sheng Z J, Xu W P, Xu T J, et al. New developments in liposomal drug delivery systems[J]. China Pharmaceuticals, 2015, 24(23): 6-9. | |
25 | Hajj K A, Whitehead K A. Tools for translation: non-viral materials for therapeutic mRNA delivery[J]. Nature Reviews Materials, 2017, 2(10): 17056. |
26 | 王赫, 董丽, 邵明敬, 等. 芦荟大黄素纳米脂质体介导光动力疗法抑制人口腔癌CAL-27细胞增殖并促进其自噬[J]. 现代肿瘤医学, 2021, 29(5): 719-723. |
Wang H, Dong L, Shao M J, et al. Aloe-emodin nanoliposome-mediated photodynamic therapy inhibits proliferation and promotes autophagy of human oral cancer CAL-27 cells[J]. Journal of Modern Oncology, 2021, 29(5): 719-723. | |
27 | Zhong R B, Talebian S, Mendes B B, et al. Hydrogels for RNA delivery[J]. Nature Materials, 2023, 22: 818-831. |
28 | Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2: 751-760. |
29 | Vinogradov S V, Bronich T K, Kabanov A V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells[J]. Advanced Drug Delivery Reviews, 2002, 54(1): 135-147. |
30 | Vicent M J, Duncan R. Polymer conjugates: nanosized medicines for treating cancer[J]. Trends in Biotechnology, 2006, 24(1): 39-47. |
31 | Li J, Zheng C, Cansiz S, et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy[J]. Journal of the American Chemical Society, 2015, 137(4): 1412-1415. |
32 | Shi Z Q, Zhou Y, Fan T J, et al. Inorganic nano-carriers based smart drug delivery systems for tumor therapy[J]. Smart Materials in Medicine, 2020, 1: 32-47. |
33 | 闫正东, 梁晓蕾, 汤会玲. 功能化介孔二氧化硅纳米材料的应用[J]. 纳米技术, 2019, 3(9): 93-100. |
Yan Z D, Liang X L, Tang H L. Application of functionalized mesoporous silica nanomaterials[J]. Hans Journal of Nanotechnology, 2019, 3(9): 93-100. | |
34 | Zhang S Q, Sun J. Nano-drug delivery system for the treatment of acute myelogenous leukemia[J]. Journal of Zhejiang University. Medical Sciences, 2022, 51(2): 233-240. |
35 | Ye L, Yong K T, Liu L W, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots[J]. Nature Nanotechnology, 2012, 7: 453-458. |
36 | Berishvili E, Casiraghi F, Amarelli C, et al. Mini-organs forum: how to advance organoid technology to organ transplant community[J]. Transplant International: Official Journal of the European Society for Organ Transplantation, 2021, 34(9): 1588-1593. |
37 | Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric systems for controlled drug release[J]. Chemical Reviews, 1999, 99(11): 3181-3198. |
38 | Gref R, Minamitake Y, Peracchia M T, et al. Biodegradable long-circulating polymeric nanospheres[J]. Science, 1994, 263(5153): 1600-1603. |
39 | Kwak S Y, Lew T T S, Sweeney C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nature Nanotechnology, 2019, 14: 447-455. |
40 | Bordat A, Boissenot T, Nicolas J, et al. Thermoresponsive polymer nanocarriers for biomedical applications[J]. Advanced Drug Delivery Reviews, 2019, 138: 167-192. |
41 | Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers[J]. Advanced Drug Delivery Reviews, 2022, 182: 114097. |
42 | Liu J, Chang J, Jiang Y, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles[J]. Advanced Materials, 2019, 31(33): e1902575. |
43 | Aditya N P, Macedo A S, Doktorovova S, et al. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE)[J]. LWT-Food Science and Technology, 2014, 59(1): 115-121. |
44 | Li Y, Fu R Z, Duan Z G, et al. Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing[J]. ACS Nano, 2022, 16(5): 7486-7502. |
45 | Wang W X, Zhang G R, Wang Y Y, et al. An injectable and thermosensitive hydrogel with nano-aided NIR-Ⅱ phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration[J]. Journal of Nanobiotechnology, 2023, 21(1): 367. |
46 | Ehlerding E B, Chen F, Cai W B. Biodegradable and renal clearable inorganic nanoparticles[J]. Advanced Science, 2016, 3(2): 1500223. |
47 | Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery[J]. Advanced Functional Materials, 2020, 30(2): 1902634. |
48 | Hirakawa H, Shiota S, Shiraishi Y, et al. Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light[J]. ACS Catalysis, 2016, 6(8): 4976-4982. |
49 | Zhao C, Meng L H, Chu H Y, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B: Environmental, 2023, 321: 122034. |
50 | Mitchell M J, Billingsley M M, Haley R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nature Reviews Drug Discovery, 2021, 20: 101-124. |
51 | Prasad M, Kumar R, Buragohain L, et al. Organoid technology: a reliable developmental biology tool for organ-specific nanotoxicity evaluation[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 696668. |
52 | Salvioni L, Rizzuto M A, Bertolini J A, et al. Thirty years of cancer nanomedicine: success, frustration, and hope[J]. Cancers (Basel), 2019, 11(12): 1855. |
53 | Carton F, Malatesta M. Assessing the interactions between nanoparticles and biological barriers in vitro: a new challenge for microscopy techniques in nanomedicine[J]. European Journal of Histochemistry, 2022, 66(4): 3603. |
54 | Anselmo A C, Mitragotri S. Nanoparticles in the clinic: an update[J]. Bioengineering & Translational Medicine, 2019, 4(3): e10143. |
55 | Al-Jamal K T, Al-Jamal W T, Wang J T, et al. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo [J]. ACS Nano, 2013, 7(3): 1905-1917. |
56 | Yoshida G J. Applications of patient-derived tumor xenograft models and tumor organoids[J]. Journal of Hematology&Oncology, 2020, 13(1): 4. |
57 | Zushin P J H, Mukherjee S, Wu J C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches[J]. The Journal of Clinical Investigation, 2023, 133(21): e175824. |
58 | Mahapatra C, Lee R D, Paul M K. Emerging role and promise of nanomaterials in organoid research[J]. Drug Discovery Today, 2022, 27(3): 890-899. |
59 | Wechsler M E, Ramirez J E V, Peppas N A. 110th Anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer's disease: crossing the blood-brain barrier[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15079-15087. |
60 | Abdolahi S, Ghazvinian Z, Muhammadnejad S, et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research[J]. Journal of Translational Medicine, 2022, 20(1): 206. |
61 | Corrò C, Novellasdemunt L, Li V S W. A brief history of organoids[J]. American Journal of Physiology. Cell Physiology, 2020, 319(1): C151-C165. |
62 | Kim J, Koo B K, Knoblich J A. Human organoids: model systems for human biology and medicine[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. |
63 | Xu H X, Jiao Y, Qin S, et al. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine[J]. Experimental Hematology & Oncology, 2018, 7: 30. |
64 | Choi W H, Bae D H, Yoo J. Current status and prospects of organoid-based regenerative medicine[J]. BMB Reports, 2023, 56(1): 10-14. |
65 | Kruitwagen H S, Oosterhoff L A, van Wolferen M E, et al. Long-term survival of transplanted autologous canine liver organoids in a COMMD1-deficient dog model of metabolic liver disease[J]. Cells, 2020, 9(2): 410. |
66 | Tong T J, Qi Y J, Rollins D, et al. Rational design of oral drugs targeting mucosa delivery with gut organoid platforms[J]. Bioactive Materials, 2023, 30: 116-128. |
67 | Davoudi Z, Peroutka-Bigus N, Bellaire B, et al. Gut organoid as a new platform to study alginate and chitosan mediated plga nanoparticles for drug delivery[J]. Marine Drugs, 2021, 19(5): 282. |
68 | Wang W W, Cai J, Wen J Y, et al. Boosting ferroptosis via abplatin(Ⅳ) for treatment of platinum-resistant recurrent ovarian cancer[J]. Nano Today, 2022, 44: 101459. |
69 | Weng G H, Tao J X, Liu Y Z, et al. Organoid: Bridging the gap between basic research and clinical practice[J]. Cancer Letters, 2023, 572: 216353. |
70 | Xiao R R, Lv T, Tu X, et al. An integrated biomimetic array chip for establishment of collagen-based 3D primary human hepatocyte model for prediction of clinical drug-induced liver injury[J]. Biotechnology and Bioengineering, 2021, 118(12): 4687-4698. |
71 | Rumsey J W, Lorance C, Jackson M, et al. Classical complement pathway inhibition in a “human-on-a-chip” model of autoimmune demyelinating neuropathies[J]. Advances in Therapy, 2022, 5(6): 2200030. |
72 | Koike H, Iwasawa K, Ouchi R, et al. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells[J]. Nature Protocols, 2021, 16(2): 919-936. |
73 | Bruun J, Kryeziu K, Eide P W, et al. Patient-derived organoids from multiple colorectal cancer liver metastases reveal moderate intra-patient pharmacotranscriptomic heterogeneity[J]. Clinical Cancer Research, 2020, 26(15): 4107-4119. |
74 | Obaid G, Bano S, Mallidi S, et al. Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia?[J]. Nano Letters, 2019, 19(11): 7573-7587. |
75 | Shen C, Zhang Z J, Li X X, et al. Intersection of nanomaterials and organoids technology in biomedicine[J]. Frontiers in Immunology, 2023, 14: 1172262. |
76 | Zhao D K, Liang J, Huang X Y, et al. Organoids technology for advancing the clinical translation of cancer nanomedicine[J]. WIREs Nanomedicine and Nanobiotechnology, 2023, 15(5): e1892. |
77 | Huang C Z, Zhou Y, Feng X Y, et al. Delivery of engineered primary tumor-derived exosomes effectively suppressed the colorectal cancer chemoresistance and liver metastasis[J]. ACS Nano, 2023, 17(11): 10313-10326. |
78 | Kromidas E, Geier A, Weghofer A, et al. Immunocompetent PDMS-free organ-on-chip model of cervical cancer integrating patient-specific cervical fibroblasts and neutrophils[J]. Advanced Healthcare Materials, 2023: e2302714. |
79 | Tavakol D N, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration[J]. Cell Stem Cell, 2021, 28(6): 993-1015. |
80 | Imparato G, Urciuolo F, Netti P A. Organ on chip technology to model cancer growth and metastasis[J]. Bioengineering-Basel, 2022, 9(1): 28. |
81 | Yoon S, Kilicarslan You D, Jeong U, et al. Microfluidics in high-throughput drug screening: organ-on-a-chip and C. elegans-based innovations[J]. Biosensors (Basel), 2024, 14(1): 55. |
82 | Rogers K W, Schier A F. Morphogen gradients: from generation to interpretation[J]. Annual Review of Cell and Developmental Biology, 2011, 27: 377-407. |
83 | Marti-Figueroa C R, Ashton R S. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis[J]. Acta Biomaterialia, 2017, 54: 35-44. |
84 | Kruse C R, Singh M, Targosinski S, et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study[J]. Wound Repair Regen, 2017, 25(2): 260-269. |
85 | Sarkar S, Srivastava T P, Sahoo O S, et al. Applications of quantum dots in preventive oncology[J]. Asian Pacific Journal of Cancer Prevention, 2024, 25(3): 747-756. |
86 | Chen G B, Lv Y G, Guo P, et al. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment[J]. Current Stem Cell Research & Therapy, 2013, 8(4): 313-323. |
87 | Takahashi M, Ishida T, Traub O, et al. Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress[J]. Journal of Vascular Research, 1997, 34(3): 212-219. |
88 | Ribeiro A J S, Ang Y S, Fu J D, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12705-12710. |
89 | Chaudhuri O, Cooper-White J, Janmey P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822): 535-546. |
90 | Jiang Y F, Zhang H Y, Wang J, et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy[J]. Journal of Hematology & Oncology, 2022, 15(1): 34. |
91 | Khorsandi D, Yang J W, Foster S, et al. Patient-derived organoids as therapy screening platforms in cancer patients[J]. Advanced Healthcare Materials, 2024: 2302331. |
92 | Zhao J S, Shi S, Qu H Y, et al. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth[J]. Nature Metabolism, 2022, 4(2): 239-253. |
93 | Lee H N, Choi Y Y, Kim J W, et al. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip[J]. Nano Convergence, 2021, 8(1): 35. |
94 | Fu A C, Mao S F, Kasai N, et al. Dynamic tissue model in vitro and its application for assessment of microplastics-induced toxicity to air-blood barrier (ABB)[J]. Biosensors & Bioelectronics, 2024, 246: 115858. |
95 | Telles-Silva K A, Pacheco L, Komatsu S, et al. Applied hepatic bioengineering: modeling the human liver using organoid and liver-on-a-chip technologies[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 845360. |
96 | Mandrycky C J, Howard C C, Rayner S G, et al. Organ-on-a-chip systems for vascular biology[J]. Journal of Molecular and Cellular Cardiology, 2021, 159: 1-13. |
97 | Kroll K T, Mata M M, Homan K A, et al. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(35): e2305322120. |
98 | Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. |
99 | Zhang Y S, Aleman J, Shin S R, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): E2293-E2302. |
100 | Lopez-Muñoz G A, Mughal S, Ramón-Azcón J. Sensors and biosensors in organs-on-a-chip platforms[J]. Advances in Experimental Medicine and Biology, 2022, 1379: 55-80. |
101 | Saglam-Metiner P, Yildirim E, Dincer C, et al. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity[J]. Microchimica Acta, 2024, 191(1): 71. |
102 | Zhu J Y, He J C, Verano M, et al. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation[J]. Lab on a Chip, 2018, 18(23): 3550-3560. |
103 | Huh D, Matthews B D, Mammoto A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. |
104 | Jastrzębska E, Bazylińska U, Bułka M, et al. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers[J]. Biomicrofluidics, 2016, 10(1): 014116. |
105 | Ahn S I, Sei Y J, Park H J, et al. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms[J]. Nature Communications, 2020, 11: 175. |
106 | Kavanagh E, Allenby G. Bioengineered 3D glial cell culture systems and applications for neurodegeneration and neuroinflammation[J]. SLAS Discovery: Advancing Life Sciences R & D, 2017, 22(5): 583-601. |
107 | Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives[J]. Cancer Letters, 2012, 320(2): 130-137. |
108 | Dávila S, Cacheux J, Rodríguez I. Microvessel-on-chip fabrication for the in vitro modeling of nanomedicine transport[J]. ACS Omega, 2021, 6(39): 25109-25115. |
109 | Lee S, Kim S, Koo D J, et al. 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine[J]. ACS Nano, 2021, 15(1): 338-350. |
110 | Su X, Zhang X Y, Liu W J, et al. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy[J]. Seminars in Cancer Biology, 2022, 86(Pt 2): 929-942. |
111 | Deir S, Mozhdehbakhsh Mofrad Y, Mashayekhan S, et al. Step-by-step fabrication of heart-on-chip systems as models for cardiac disease modeling and drug screening[J]. Talanta, 2024, 266: 124901. |
112 | Yang X Y, Liu N, Li X Y, et al. A review on the effect of traditional Chinese medicine against anthracycline-induced cardiac toxicity[J]. Frontiers in Pharmacology, 2018, 9: 444. |
113 | Hennis K, Rötzer R D, Rilling J, et al. In vivo and ex vivo electrophysiological study of the mouse heart to characterize the cardiac conduction system, including atrial and ventricular vulnerability[J]. Nature Protocols, 2022, 17(5): 1189-1222. |
114 | Ho D, Zhao X, Gao S M, et al. Heart rate and electrocardiography monitoring in mice[J]. Current Protocols in Mouse Biology, 2011, 1: 123-139. |
115 | Cheng Y X, Tao J S, Zhang Y Q, et al. Shape and shear stress impact on the toxicity of mesoporous silica nanoparticles: in vitro and in vivo evidence[J]. Molecular Pharmaceutics, 2023, 20(6): 3187-3201. |
116 | Lu R X Z, Lai B F L, Benge T, et al. Heart-on-a-chip platform for assessing toxicity of air pollution related nanoparticles[J]. Advanced Materials Technologies, 2021, 6(2): 2000726. |
117 | Li Z A, Tuan R S. Towards establishing human body-on-a-chip systems[J]. Stem Cell Research & Therapy, 2022, 13(1): 431. |
118 | Soldatow V Y, Lecluyse E L, Griffith L G, et al. In vitro models for liver toxicity testing[J]. Toxicology Research, 2013, 2(1): 23-39. |
119 | Joseph X, Akhil V, Arathi A, et al. Comprehensive development in organ-on-a-chip technology[J]. Journal of Pharmaceutical Sciences, 2022, 111(1): 18-31. |
120 | Esch M B, Mahler G J, Stokol T, et al. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury[J]. Lab On a Chip, 2014, 14(16): 3081-3092. |
121 | Ronaldson-Bouchard K, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow[J]. Nature Biomedical Engineering, 2022, 6(4): 351-371. |
122 | Novak R, Ingram M, Marquez S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nature Biomedical Engineering, 2020, 4: 407-420. |
[1] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[2] | 司友明, 郑凌峰, 陈鹏忠, 樊江莉, 彭孝军. 新型锑氧簇光刻胶的性能与机理研究[J]. 化工学报, 2024, 75(4): 1705-1717. |
[3] | 曹宇, 张国辉, 高昂, 杜心宇, 周静, 蔡永茂, 余璇, 于晓明. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428. |
[4] | 尹玉华, 方灿, 易清风, 李广. 不同碳导电剂对铁-空气电池性能的影响[J]. 化工学报, 2024, 75(2): 685-694. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[13] | 蒋旭浩, 刘远超, 徐一帆, 李耑, 刘新昊, 李梓硕. 基于第一性原理的不同结构石墨炔热电输运特性研究[J]. 化工学报, 2023, 74(12): 5016-5026. |
[14] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[15] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||