化工学报 ›› 2024, Vol. 75 ›› Issue (2): 412-428.DOI: 10.11949/0438-1157.20231082
曹宇1,2(), 张国辉1,2, 高昂1,2, 杜心宇1,2, 周静1,3, 蔡永茂4(), 余璇5, 于晓明5()
收稿日期:
2023-10-24
修回日期:
2024-02-20
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
蔡永茂,于晓明
作者简介:
曹宇(1986—),男,博士,教授,ycao@neepu.edu.cn
基金资助:
Yu CAO1,2(), Guohui ZHANG1,2, Ang GAO1,2, Xinyu DU1,2, Jing ZHOU1,3, Yongmao CAI4(), Xuan YU5, Xiaoming YU5()
Received:
2023-10-24
Revised:
2024-02-20
Online:
2024-02-25
Published:
2024-04-10
Contact:
Yongmao CAI, Xiaoming YU
摘要:
MXene是一种新型二维材料,具有导电性髙、表面官能团丰富、层间距和能带结构可调等特点,从而在新能源器件中拥有重要的研究价值。综述了MXene在太阳能电池和金属离子电池中应用的相关进展。在太阳能电池中,基于MXene高电导率、高透明度和功函数灵活可调的特点,讨论了其在电极和载流子传输层中的相关应用研究,并对MXene功函数调整的策略进行了总结。在金属离子电池中,基于MXene独特的二维层状结构、优异的力学性能和良好的导电性,讨论了MXene作为负极材料以及与碳纳米材料、金属氧化物和硅组成的复合材料对电化学性能的提升作用,并对MXene在正极材料、集流体以及隔膜中应用也进行了介绍。最后对MXene的下一步发展进行了展望。
中图分类号:
曹宇, 张国辉, 高昂, 杜心宇, 周静, 蔡永茂, 余璇, 于晓明. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428.
Yu CAO, Guohui ZHANG, Ang GAO, Xinyu DU, Jing ZHOU, Yongmao CAI, Xuan YU, Xiaoming YU. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries[J]. CIESC Journal, 2024, 75(2): 412-428.
图3 (a)使用混合碳电极的钙钛矿太阳能电池器件结构和混合碳电极截面SEM图像[19];(b)热压法制备Ti3C2T x 电极的工艺流程图;(c)基于Ti3C2T x 电极的钙钛矿太阳能电池截面SEM图像[20];(d)Ti3C2T x 柔性透明电极的结构示意图[21];(e)柔性光伏超级电容器的结构示意图[23];(f)大规模沉积Ti3C2T x 作为硅异质结太阳能电池背电极的自动喷涂设备的示意图(左下角插图为硅异质结太阳能电池的器件结构图,右下角为覆盖硅异质结太阳能电池的ITO涂覆的金字塔纹理表面的Ti3C2T x 薄片的倾斜俯视SEM图像)[24]
Fig.3 (a) Device structure of the perovskite solar cells using the mixed carbon electrode and cross-sectional SEM images of the mixed carbon electrode[19]; (b) Process flow diagram of Ti3C2T x electrode prepared by hot pressing method; (c) Cross section SEM images of the perovskite solar cells based on Ti3C2T x electrode[20]; (d) Structural schematic diagram of Ti3C2T x flexible transparent electrode[21]; (e) Structure of flexible photovoltaic supercapacitors[23]; (f) Schematic diagram of the automated spraying apparatus of large-scale deposition of Ti3C2T x flakes as the back electrode for silicon heterojunctions solar cells[Insets: (Bottom-left) Structure of the silicon heterojunctions solar cell; (Bottom-right) Tilted top-view SEM image of the Ti3C2T x flakes covering the ITO-coated pyramidal textured surface of silicon heterojunctions solar cells][24]
图4 (a)SnO2-Ti3C2作为电子传输层的钙钛矿太阳能电池器件结构[27];(b)MXene诱导钙钛矿垂直生长示意图;(c)SnO2/钙钛矿的截面和顶部SEM图像;(d)MXene桥接SnO2和钙钛矿的结构示意图;(e)SnO2-MXene/钙钛矿的截面和顶部SEM图像[29]
Fig.4 (a) Structure of perovskite solar cell device with SnO2-Ti3C2 ETL[27]; (b) Schematic diagram of MXene induced perovskite growth; (c) SEM images of cross-sections and top for SnO2/perovskite; (d) Schematic diagram of the mechanism of MXene bridging SnO2 and perovskite; (e) SEM images of cross-sections and top for SnO2-MXene/perovskite[29]
图5 Ti3C2T x 改性SnO2 ETL的太阳能电池器件结构(a)和能级图(b);(c)有无MXene改性的钙钛矿太阳能电池的稳态效率和JSC[31];(d)Au@Nb2CT x 修饰的钙钛矿太阳能电池器件结构;(e)Nb2CT x 修饰的钙钛矿太阳能电池能级图;(f) 反向扫描模式下测量的对照组和Au@Nb2CT x -MXene修饰器件的J-V曲线[32];(g)Nb2CT x 作为载流子传输层的钙钛矿太阳能电池的结构示意图;(h)Nb2C 作为载流子传输层的钙钛矿太阳能电池的能级图;(i)优化前后钙钛矿太阳能电池的J-V曲线[33]
Fig.5 Device structure (a) and energy level diagram (b) of the PSCs with Ti3C2T x -modified SnO2 ETL; (c) Steady-state efficiencies and JSC of control and MXene-modified perovskite solar cell at their maximum power points[31]; (d) Structure of perovskite solar cells modified by Au@Nb2CT x; (e) Energy level diagram of Nb2CT x modified perovskite solar cells; (f) J-V curves measured under the reverse scan mode for the control and Au@Nb2CT x -MXene modified devices[32]; (g) Schematic diagram of the perovskite solar cell device structure incorporating Nb2C as charge transporting layers; (h) Schematic energy band diagram of the planar perovskite solar cell, showing the use of Nb2C MXene as charge transport layers whose optoelectrical properties can be tuned by surface terminal groups; (i) J-V curves of perovskite solar cells before and after optimization[33]
图6 (a)TBAB分子向Ti3C2T x 的Bader电荷转移及在z轴方向上的偶极矩(黄色等值面表示电荷增加,青色等值面表示电量损失)[34];D-Ti3C2T x (b)和R-Ti3C2T x (c)中功函数变化机制示意图[35];(d)原始Nb2CT x 、LiOH处理6 h后的Nb2CT x 和进一步退火处理4 h后的Nb2CT x 的能级图[33];(e)偶极层的形成(由—OH、—F和—O引起)和界面偶极引起Nb2C的EF位移(Evac表示真空能级;EF表示费米能级;Φ表示功函数)[39]
Fig.6 (a) Bader charge transfer from TBAB molecular to Ti3C2T x and the dipole moment in the direction of z-axis(The yellow isosurfaces indicate gaining of charge and the cyan isosurfaces indicate loss of charge)[34]; Schematic of work function changes mechanism in D-Ti3C2T x (b) and R-Ti3C2T x (c)[35]; (d) Energy-levels diagrams of pristine Nb2CT x, Nb2CT x with LiOH treatment for 6 h and Nb2CT x with further annealed treatment for 4 h[33]; (e) Formation of the dipole layer (induced by—OH, —F, and —O) and the interfacial dipole-induced EF shift of Nb2C (Evac indicates the vacuum level; EF indicates the Fermi level; Φ indicates the work function) [39]
图7 (a)少层V2CT x /CNT的制备示意图[53];(b)Nb2C/rGO气凝胶的合成示意图[55];(c)Ti3C2T x /GDYO异质结构的合成示意图[56];(d)边缘褶皱的Ti2NbC2T x @CDs纳米片示意图[58]
Fig.7 (a) Schematic diagram for the preparation of few-layer V2CT x /CNT[53]; (b) Schematic diagram for the synthesis of Nb2C/rGO aerogel[55]; (c) Schematic synthesis of Ti3C2T x /GDYO heterostructure[56]; (d) Schematic diagram of the edge-crumpled Ti2NbC2T x @CDs nanosheets[58]
图8 (a)Ti3C2T x /FeVO4复合薄膜的合成过程示意图;(b)Ti3C2T x /FeVO4柔性薄膜;(c)Ti3C2T x /FeVO4的截面SEM图像;(d)Ti3C2T x /FeVO4负极在5 A/g下的长循环测试[68]
Fig.8 (a) Schematic diagram of the preparation method of Ti3C2T x /FeVO4 films composites; (b) Ti3C2T x /FeVO4 flexible film; (c) Cross-sectional scanning electron microscopy images of Ti3C2T x /FeVO4; (d) Long cycling test of Ti3C2T x /FeVO4 at 5 A/g[68]
图9 (a)Si纳米球/MXene薄膜制备示意图[77];(b)pSi/MXene薄膜制备示意图;(c)不同质量比的pSi/MXene负极在0.5 A/g下的循环性能;pSi负极(d)和pSi/MXene负极(e)200次循环后的SEM图像[78]
Fig.9 (a) Schematic diagram for the preparation of Si nanospheres/MXene thin films[77]; (b) Schematic illustration for the preparation of pSi/MXene film; (c) Cycling performance at 0.5 A/g of pSi/MXene films with different mass ratios; SEM images of pSi (d) and pSi/MXene (e) anode after 200 cycles[78]
图10 (a)MXene/LFP@C复合材料制备过程示意图;(b)MXene/LFP@C纳米片的SEM图像[84];(c)MXene-Al集流体结构示意图;Al(d)和MXene-Al(e)集流体在CV测试后的SEM图像[90];(f)MXene/PP增强LiNi0.8Co0.1Mn0.1O2(NCM811)正极性能的机理示意图[93]
Fig.10 (a) Schematic diagram of the preparation process for the MXene/LFP@C composites; (b) SEM images of MXene/LFP@C nanoplates[84]; (c) Schematic diagram of MXene-Al current collector for LIB;SEM images of Al (d) and MXene-Al (e) after CV measurements[90]; (f) Schematic diagram of the mechanism of MXene/PP to enhance the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performances[93]
1 | Najam T, Ahmad Shah S S, Peng L S, et al. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: recent advances and perspectives[J]. Coordination Chemistry Reviews, 2022, 454: 214339. |
2 | Murali G, Reddy Modigunta J K, Park Y H, et al. A review on MXene synthesis, stability, and photocatalytic applications[J]. ACS Nano, 2022, 16(9): 13370-13429. |
3 | Khaledialidusti R, Khazaei M, Khazaei S, et al. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes[J]. Nanoscale, 2021, 13(15): 7294-7307. |
4 | Shi Z, Khaledialidusti R, Malaki M, et al. MXene-based materials for solar cell applications[J]. Nanomaterials, 2021, 11(12): 3170. |
5 | Wang F, Wang S J, Tian F, et al. Advances in molten-salt-assisted synthesis of 2D MXenes and their applications in electrochemical energy storage and conversion[J]. Chemical Engineering Journal, 2023, 470: 144185. |
6 | Gao L F, Li C, Huang W C, et al. MXene/polymer membranes: synthesis, properties, and emerging applications[J]. Chemistry of Materials, 2020, 32(5): 1703-1747. |
7 | Li M, Lu J, Luo K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. |
8 | Yu X H, Cai X K, Cui H D, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy[J]. Nanoscale, 2017, 9(45): 17859-17864. |
9 | Li X S, Ma X F, Zhang H K, et al. Ambient-stable MXene with superior performance suitable for widespread applications[J]. Chemical Engineering Journal, 2023, 455: 140635. |
10 | Wang D, Zhou C K, Filatov A S, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes[J]. Science, 2023, 379(6638): 1242-1247. |
11 | Naguib M, Barsoum M W, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes[J]. Advanced Materials, 2021, 33(39): 2103393. |
12 | 居涛, 李国辉, 耿凤霞. 一步法合成二维Ti3C2及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959. |
Ju T, Li G H, Geng F X. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance[J]. CIESC Journal, 2022, 73(2): 951-959. | |
13 | Aghamohammadi H, Eslami-Farsani R, Castillo-Martinez E. Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries[J]. Journal of Energy Storage, 2022, 47: 103572. |
14 | Palei S, Murali G, Kim C H, et al. A review on interface engineering of MXenes for perovskite solar cells[J]. Nano-Micro Letters, 2023, 15(1): 123. |
15 | Zhang Y, Feng Z, Wang X, et al. MXene/carbon composites for electrochemical energy storage and conversion[J]. Materials Today Sustainability, 2023, 22: 100350. |
16 | Pan S S, Yin J H, Yu L D, et al. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction[J]. Advanced Science, 2020, 7(2): 1901511. |
17 | Wang L, Cheng J W, Zou Y X, et al. Current advances and future perspectives of MXene-based electromagnetic interference shielding materials[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 172. |
18 | 杨琴, 秦传鉴, 李明梓, 等. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
Yang Q, Qin C J, Li M Z, et al. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor[J]. CIESC Journal, 2023, 74(6): 2699-2707. | |
19 | Mi L F, Zhang Y, Chen T T, et al. Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells[J]. RSC Advances, 2020, 10(21): 12298-12303. |
20 | Cao J M, Meng F N, Gao L G, et al. Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes[J]. RSC Advances, 2019, 9(59): 34152-34157. |
21 | Chen W P, Zhang R J, Yang X, et al. A 1D: 2D structured AgNW: MXene composite transparent electrode with high mechanical robustness for flexible photovoltaics[J]. Journal of Materials Chemistry C, 2022, 10(22): 8625-8633. |
22 | Nirmal K A, Ren W Q, Khot A C, et al. Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes[J]. Advanced Science, 2023, 10(19): 2300433. |
23 | Qin L Q, Jiang J X, Tao Q Z, et al. A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes[J]. Journal of Materials Chemistry A, 2020, 8(11): 5467-5475. |
24 | Aydin E, El-Demellawi J K, Yarali E, et al. Scaled deposition of Ti3C2T x MXene on complex surfaces: application assessment as rear electrodes for silicon heterojunction solar cells[J]. ACS Nano, 2022, 16(2): 2419-2428. |
25 | Pan H, Zhao X J, Gong X, et al. Advances in design engineering and merits of electron transporting layers in perovskite solar cells[J]. Materials Horizons, 2020, 7(9): 2276-2291. |
26 | Yu M, Guo Y R, Yuan S, et al. The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells[J]. RSC Advances, 2020, 10(21): 12347-12353. |
27 | Yang L, Dall'Agnese Y, Hantanasirisakul K, et al. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(10): 5635-5642. |
28 | Wang H, Zhu C, Liu L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability[J]. Advanced Materials, 2019, 31(48): 1904408. |
29 | Wu C, Fang W Z, Cheng Q F, et al. MXene-regulated perovskite vertical growth for high-performance solar cells[J]. Angewandte Chemie International Edition, 2022, 61(43): 202210970. |
30 | Niu Y C, Tian C, Gao J J, et al. Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells[J]. Nano Energy, 2021, 89: 106455. |
31 | Wang Y F, Xiang P, Ren A B, et al. MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53973-53983. |
32 | Liu S N, Zhou D L, Zhuang X M, et al. Interfacial engineering of Au@Nb2CT x -MXene modulates the growth strain, suppresses the auger recombination, and enables an open-circuit voltage of over 1.2 V in perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 3961-3973. |
33 | Zhang Y H, Xu L, Sun J, et al. 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance[J]. Advanced Energy Materials, 2022, 12(37): 2201269. |
34 | Cai P, Ding L, Chen Z M, et al. Tetrabutylammonium bromide functionalized Ti3C2T x MXene as versatile cathode buffer layer for efficient and stable inverted perovskite solar cells[J]. Advanced Functional Materials, 2023, 33(30): 2300113. |
35 | Hou C L, Huang C W, Yu H Z, et al. Surface-engineered Ti3C2T x with tunable work functions for highly efficient polymer solar cells[J]. Small, 2022, 18(21): 2201046. |
36 | Zhang J K, Huang C W, Sun Y P, et al. Amino-functionalized niobium-carbide MXene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells[J]. Advanced Functional Materials, 2022, 32(24): 2113367. |
37 | Yang L, Kan D X, Dall'Agnese C, et al. Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2T x in air[J]. Journal of Materials Chemistry A, 2021, 9(8): 5016-5025. |
38 | Zhang J K, Huang C W, Yu H. Modulate the work function of Nb2CT x MXene as the hole transport layer for perovskite solar cells[J]. Applied Physics Letters, 2021, 119(3): 033506. |
39 | Huang C W, Shi S W, Yu H. Work function adjustment of Nb2CT x nanoflakes as hole and electron transport layers in organic solar cells by controlling surface functional groups[J]. ACS Energy Letters, 2021, 6(10): 3464-3472. |
40 | Naguib M, Come J, Dyatkin B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 16(1): 61-64. |
41 | Li C, Zhang X, Wang K, et al. Accordion-like titanium carbide(MXene) with high crystallinity as fast intercalative anode for high-rate lithium-ion capacitors[J]. Chinese Chemical Letters, 2020, 31(4): 1009-1013. |
42 | Sun N, Yang B Y, Zheng J C, et al. Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries[J]. Ceramics International, 2018, 44(14): 16214-16218. |
43 | Zhou J F, Lin S, Huang Y N, et al. Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene[J]. Chemical Engineering Journal, 2019, 373: 203-212. |
44 | Zhang H T, Xin X J, Liu H, et al. Enhancing lithium adsorption and diffusion toward extraordinary lithium storage capability of freestanding Ti3C2T x MXene[J]. The Journal of Physical Chemistry C, 2019, 123(5): 2792-2800. |
45 | Cai L R, Li Z, Zhang S S, et al. Safer lithium-ion battery anode based on Ti3C2T z MXene with thermal safety mechanistic elucidation[J]. Chemical Engineering Journal, 2021, 419(3): 129387. |
46 | Zhao J B, Wen J, Xiao J P, et al. Nb2CT MXene: high capacity and ultra-long cycle capability for lithium-ion battery by regulation of functional groups[J]. Journal of Energy Chemistry, 2020, 53: 387-395. |
47 | Xia Y, Que L F, Yu F D, et al. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature[J]. Nano-Micro Letters, 2022, 14(1): 143. |
48 | Gao Z W, Zheng W R, Lee L Y S. Highly enhanced pseudocapacitive performance of vanadium-doped MXenes in neutral electrolytes[J]. Small, 2019, 15(40): 1902649. |
49 | Bao W Z, Shuck C E, Zhang W X, et al. Boosting performance of Na-S batteries using sulfur-doped Ti3C2T x MXene nanosheets with a strong affinity to sodium polysulfides[J]. ACS Nano, 2019, 13(10): 11500-11509. |
50 | Fatima M, Fatheema J, Monir N B, et al. Nb-doped MXene with enhanced energy storage capacity and stability[J]. Frontiers in Chemistry, 2020, 8: 168. |
51 | Li X Y, Pang Y D, Wang M Y, et al. The synergistic effect of Ti and Nb in TiNbC leads to enhanced anode performance for Na-ion batteries — first-principles calculations[J]. Physica Scripta, 2023, 98(2): 025710. |
52 | Liu W, Cao J, Song F, et al. A double transition metal Ti2NbC2T x MXene for enhanced lithium-ion storage[J]. Rare Metals, 2023, 42(1): 100-110. |
53 | Zhang X P, Zhang T Z, Xiao J P, et al. Highly stable few-layer V2CT x MXene/carbon nanotube structure with restrained restacking for lithium ion storage[J]. Journal of Colloid and Interface Science, 2022, 630: 502-511. |
54 | Wang T, Zeng J J, Gu X R, et al. In-situ growth of nitrogen-doped carbon nanotubes on MXene nanosheets for efficient sodium/potassium-ion storage[J]. Frontiers in Materials, 2023, 10: 1214543. |
55 | Liu C, Fang Z T, Li X G, et al. Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability[J]. Nano Research, 2023, 16(2): 2463-2473. |
56 | Wang T, Zhao J T, Qi L, et al. Ultrathin graphdiyne oxide-intercalated MXene: a new heterostructure with interfacial synergistic effect for high performance lithium-ion storage[J]. Energy Storage Materials, 2023, 54: 10-19. |
57 | Guan G, Lu L, Meng W, et al. Nb2CT x MXene anchored with carbon quantum dots for lithium-ion batteries[J]. ACS Applied Nano Materials, 2023, 6(24): 23620-23629. |
58 | Lu L, Guan G Z, Wang J, et al. Nitrogen-doped carbon dots modified double transition metal MXene (Ti2NbC2T x ) for superior lithium/sodium-ion storage[J]. Chemical Engineering Journal, DOI:10.1016/j.cej.2023.147999 . |
59 | Tao Y X, Yang N, Liang C N, et al. Cover feature: phosphorus-functionalized Fe2VO4/nitrogen-doped carbon mesoporous nanowires with exceptional lithium storage performance[J]. ChemElectroChem, 2020, 7(11): 2395-2403. |
60 | He J H, Meng J K, Huang Y H. Challenges and recent progress in fast-charging lithium-ion battery materials[J]. Journal of Power Sources, 2023, 570: 232965. |
61 | Ren J H, Wang Z Y, Xu P, et al. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries[J]. Nano-Micro Letters, 2021, 14(1): 5. |
62 | Sadeeq U, Campéon Benoît D L, Shumaila I, et al. Enabling the fast lithium storage of large-scalable γ - F e 2 O 3 /carbon nanoarchitecture anode material with an ultralong cycle life[J]. Journal of Industrial and Engineering Chemistry, 2021, 101: 379-386. |
63 | Muhammad N, Yasin G, Li A, et al. Volumetric buffering of manganese dioxide nanotubes by employing ‘as is’ graphene oxide: an approach towards stable metal oxide anode material in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 842: 155803. |
64 | Wang Y S, Li Y Y, Qiu Z P, et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11189-11197. |
65 | Zhang Z Y, Weng L, Rao Q S, et al. Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance[J]. Journal of Power Sources, 2019, 439: 227107. |
66 | Zhao D C, Zhang Z, Ren J H, et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries[J]. Chemical Engineering Journal, 2022, 451(8): 138882. |
67 | Ghani F, An K, Lee D J. Effect of calcination temperature on the physicochemical properties and electrochemical performance of FeVO4 as an anode for lithium-ion batteries[J]. Materials, 2023, 16(2): 565. |
68 | Xu H J, Fan J X, Pang D, et al. Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries[J]. Chemical Engineering Journal, 2022, 436(43): 135012. |
69 | Chen K, Guan Y F, Tan L D, et al. Atomically selective oxidation of (Ti, V) mxene to construct TiO2@TiVCT heterojunction for high-performance Li-ion batteries[J]. Applied Surface Science, 2023, 617:156575. |
70 | Liu J L, Du C J, Zou L L, et al. TiO2/Ti3C2T x composite as an anode material with ideal lithium-ion storage performance[J]. Materials Letters, 2023, 349(7): 134648. |
71 | Liu H, Zhang X, Zhu Y F, et al. Electrostatic self-assembly of 0D—2D SnO2 quantum dots/Ti3C2T x MXene hybrids as anode for lithium-ion batteries[J]. Nano-Micro Letters, 2019, 11(1): 65. |
72 | Liu Y T, Zhang P, Sun N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage[J]. Advanced Materials, 2018, 30(23): 1707334. |
73 | Wang C, Zhu X D, Wang K X, et al. A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage[J]. Sustainable Energy & Fuels, 2019, 3(10): 2577-2582. |
74 | Chang X Q, Zhu Q Z, Zhao Q, et al. 3D porous Co3O4/MXene foam fabricated via a sulfur template strategy for enhanced Li/K-ion storage[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 7999-8009. |
75 | Jiang T T, Yang H, Chen G. Enhanced performance of silicon negative electrodes composited with titanium carbide based MXenes for lithium-ion batteries[J]. Nanoenergy Advances, 2022, 2(2): 165-196. |
76 | Jiang T T, Xiong Q L, Yang H, et al. Performance and application of Si/Ti3C2T x (MXene) composites in lithium ion battery[J]. Journal of Physics: Energy, 2023, 5(1): 014020. |
77 | Tian Y, An Y L, Feng J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10004-10011. |
78 | Zhang Z H, Ying H J, Huang P F, et al. Porous Si decorated on MXene as free-standing anodes for lithium-ion batteries with enhanced diffusion properties and mechanical stability[J]. Chemical Engineering Journal, 2023, 451: 138785. |
79 | Kong F Y, He X D, Liu Q Q, et al. Enhanced reversible Li-ion storage in Si@Ti3C2 MXene nanocomposite[J]. Electrochemistry Communications, 2018, 97: 16-21. |
80 | Zhang F, Jia Z R, Wang C, et al. Sandwich-like silicon/Ti3C2T x MXene composite by electrostatic self-assembly for high performance lithium ion battery[J]. Energy, 2020, 195: 117047. |
81 | Yang Q, Wang Z L, Xia Y, et al. Facile electrostatic assembly of Si@MXene superstructures for enhanced lithium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 580: 68-76. |
82 | Tang J, Wu F Z, Dai X Y, et al. Robust MXene adding enables the stable interface of silicon anodes for high-performance Li-ion batteries[J]. Chemical Engineering Journal, 2023, 452: 139139. |
83 | Chen S P, Lv D, Chen J, et al. Review on defects and modification methods of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Fuels, 2022, 36(3): 1232-1251. |
84 | Zhang H W, Li J Y, Luo L Q, et al. Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876: 160210. |
85 | Li X C, Qian Y H, Liu T, et al. Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets[J]. Journal of Materials Science, 2018, 53(15): 11078-11090. |
86 | Zhang Y M, Li D D, Li J Z, et al. Flexible TiVCT x MXene film for high-performance magnesium-ion storage device[J]. Journal of Colloid and Interface Science, 2024, 657: 550. |
87 | Zeng G C, Zhou J, Ren S L. Two-dimensional Nb2CT x nanosheets decorated LiFePO4/C as cathode material for lithium-ion batteries[J]. Journal of Materials Science, 2023, 58(12): 5413-5426. |
88 | Chen S Y, Gao Z H, Sun T J. Safety challenges and safety measures of Li-ion batteries[J]. Energy Science & Engineering, 2021, 9(9): 1647-1672. |
89 | Wang C H, Kurra N, Alhabeb M, et al. Titanium carbide (MXene) as a current collector for lithium-ion batteries[J]. ACS Omega, 2018, 3(10): 12489-12494. |
90 | Yang S L, Li S M, Du Z G, et al. MXene-Ti3C2 armored layer for aluminum current collector enable stable high-voltage lithium-ion battery[J]. Advanced Materials Interfaces, 2022, 9(22): 2200856. |
91 | Zheng C, Yao Y, Rui X H, et al. Functional MXene-based materials for next-generation rechargeable batteries[J]. Advanced Materials, 2022, 34(51): 2204988. |
92 | An Y L, Tian Y, Feng J K, et al. MXenes for advanced separator in rechargeable batteries[J]. Materials Today, 2022, 57: 146-179. |
93 | Rao Q S, Liao S Y, Huang X W, et al. Assembly of MXene/PP separator and its enhancement for Ni-rich LiNi0.8Co0.1Mn0.1O2 electrochemical performance[J]. Polymers, 2020, 12(10): 2192. |
94 | Gu J Y, Feng Y T, Wei X, et al. Flexible fibrous separator asymmetrically coated by silica and MXene for high performance lithium batteries with enhanced safety[J]. Journal of Power Sources, 2023, 581: 233515. |
[1] | 尹玉华, 方灿, 易清风, 李广. 不同碳导电剂对铁-空气电池性能的影响[J]. 化工学报, 2024, 75(2): 685-694. |
[2] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[9] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 蒋旭浩, 刘远超, 徐一帆, 李耑, 刘新昊, 李梓硕. 基于第一性原理的不同结构石墨炔热电输运特性研究[J]. 化工学报, 2023, 74(12): 5016-5026. |
[12] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[13] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[14] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[15] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||