化工学报 ›› 2024, Vol. 75 ›› Issue (5): 2060-2071.DOI: 10.11949/0438-1157.20240027
王文雅1,2(), 张玮1,2(
), 楼小玲3, 钟若菲3, 陈冰冰1,2, 贠军贤3
收稿日期:
2024-01-05
修回日期:
2024-03-14
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
张玮
作者简介:
王文雅(1998—),男,硕士研究生,wwenya2713@163.com
基金资助:
Wenya WANG1,2(), Wei ZHANG1,2(
), Xiaoling LOU3, Ruofei ZHONG3, Bingbing CHEN1,2, Junxian YUN3
Received:
2024-01-05
Revised:
2024-03-14
Online:
2024-05-25
Published:
2024-06-25
Contact:
Wei ZHANG
摘要:
利用多微管反应器,采用结晶致孔与低温聚合方法可实现纳米纤维素嵌合型晶胶微球的规模化制备。该过程中内嵌纳米纤维素的甲基丙烯酸羟乙酯单体溶液经多微管反应器的成形是首要条件,研究其成形过程的动力学特性具有重要意义。利用高速成像和计算流体力学(CFD)模拟方法对不同入口流速(6、8、10 mm·s-1)下内嵌不同比例(单体质量的1%、3%、5%)纳米纤维素的甲基丙烯酸羟乙酯液滴形成过程进行可视化研究,考察了纳米纤维素含量对液滴成形、液滴直径分布、颈缩线长度、液滴下落速度等因素的影响规律。结果表明,内嵌纳米纤维素的甲基丙烯酸羟乙酯液滴经多微管反应器的成形及滴落,会经历拉伸与压缩过程,最后稳定为球状,测得液滴直径和颈缩线长度与纤维素浓度呈正相关,纤维素含量的增加使得单体溶液黏度和表面张力系数增加,从而增大液滴尺寸和颈缩线长度,模拟得到的结果与实验基本一致,液滴直径差异为2.1%~6.3%,颈缩线长度差异为7.2%~11.9%;在对液滴成形的放大模拟中,10 mm·s-1的入口流速下液滴平均直径为3.98 mm,平均颈缩线长为4.14 mm。最终,利用多微管反应器成功制备了纳米纤维素嵌合型晶胶微球,微球有效孔隙率可达80%以上,绝干孔隙率接近90%,是生物分离领域与微生物贴壁生长的理想载体。
中图分类号:
王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071.
Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres[J]. CIESC Journal, 2024, 75(5): 2060-2071.
Phase | |||
---|---|---|---|
1% monomer solution | 1.0178 | 2.08 | 48.7 |
3% monomer solution | 1.0206 | 2.41 | 49.0 |
5% monomer solution | 1.0237 | 3.16 | 49.6 |
air | 1.225 | 1.7894×10-2 |
表1 流体的物性参数
Table 1 Physical parameters of fluid
Phase | |||
---|---|---|---|
1% monomer solution | 1.0178 | 2.08 | 48.7 |
3% monomer solution | 1.0206 | 2.41 | 49.0 |
5% monomer solution | 1.0237 | 3.16 | 49.6 |
air | 1.225 | 1.7894×10-2 |
Distance from nozzle/mm | SF |
---|---|
5.17—6.12 | 0.029 |
6.50—7.45 | 0.071 |
7.75—8.23 | 0.040 |
9.47—15.82 | 0.159 |
16.27—17.22 | 0.025 |
表2 实验得到的SF值随液滴下落高度的变化
Table 2 Change of experimental SF value with falling height
Distance from nozzle/mm | SF |
---|---|
5.17—6.12 | 0.029 |
6.50—7.45 | 0.071 |
7.75—8.23 | 0.040 |
9.47—15.82 | 0.159 |
16.27—17.22 | 0.025 |
Distance from nozzle/mm | SF |
---|---|
4.51—5.40 | 0.027 |
6.18—7.33 | 0.116 |
7.65—8.03 | 0.014 |
8.80—14.56 | 0.083 |
15.92—19.49 | 0.002 |
表3 模拟得到的SF值随液滴下落高度的变化
Table 3 Change of simulated SF value with falling height
Distance from nozzle/mm | SF |
---|---|
4.51—5.40 | 0.027 |
6.18—7.33 | 0.116 |
7.65—8.03 | 0.014 |
8.80—14.56 | 0.083 |
15.92—19.49 | 0.002 |
质量比 [细菌纤维素∶(HEMA+PEGDA)] | 有效孔隙率/ %(质量) | 绝干孔隙率/ %(质量) |
---|---|---|
1∶100 | 83.41 | 90.80 |
3∶100 | 81.43 | 88.57 |
5∶100 | 80.35 | 87.65 |
表4 晶胶微球的孔隙率
Table 4 Porosity of crystal microspheres
质量比 [细菌纤维素∶(HEMA+PEGDA)] | 有效孔隙率/ %(质量) | 绝干孔隙率/ %(质量) |
---|---|---|
1∶100 | 83.41 | 90.80 |
3∶100 | 81.43 | 88.57 |
5∶100 | 80.35 | 87.65 |
15 | Tang H. Numerical studies of falling droplet[D]. Chengdu: Sichuan University, 2007. |
16 | Yang Q J, Cao W, Mao Q. Simulation of droplet formation in T‐inlet microchannels with different junction angle[J]. Chemical Engineering & Technology, 2022, 45(10): 1876-1883. |
17 | Sripadaraja K, Satyanarayan M N, Umesh G. Generation of microdroplets in T-junction devices by pulsed fluid flow: simulation studies[J]. ISSS Journal of Micro and Smart Systems, 2021, 10(2): 103-117. |
18 | Hu Q M, Jiang T Y, Jiang H Y. Numerical simulation and experimental validation of liquid metal droplet formation in a co-flowing capillary microfluidic device[J]. Micromachines, 2020, 11(2): 169. |
19 | Singh R, Bahga S S, Gupta A. Electrohydrodynamic droplet formation in a T-junction microfluidic device[J]. Journal of Fluid Mechanics, 2020, 905: A29. |
20 | 杨玉军, 张玮, 郑三龙, 等. 载体液滴经微细管成形过程动力学特性的实验与模拟[J]. 高校化学工程学报, 2016, 30(6): 1264-1273. |
Yang Y J, Zhang W, Zheng S L, et al. Experimental and simulation studies on dynamic formation of sodium alginate drops in miniature tubes[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(6): 1264-1273. | |
21 | Lou X L, Jiang Y B, Zhao F, et al. Preparation and characterization of semi-hydrophobic cryogels for culture of Lactobacillus strains and bioconversion towards phenyllactic acid bioproduction[J]. Biochemical Engineering Journal, 2022, 179: 108312. |
22 | Guan T T, Gao Y W, Pan M M, et al. Slug flow hydrodynamics of immiscible fluids within a rectangular microchannel towards size-controllable fabrication of dextran-based cryogel beads[J]. Chemical Engineering Journal, 2019, 369: 116-123. |
23 | 贺亚维, 张颂红, 黄杰, 等. 内嵌纳凝胶阴离子交换聚甲基丙烯酸羟乙酯复合晶胶分离苯乳酸研究[J]. 化工学报, 2020, 71(12): 5636-5643. |
He Y W, Zhang S H, Huang J, et al. Separation of phenyllactic acid from transformation broth by anion exchange poly(2-hydroxyethyl methacrylate) composite cryogel embedded with nanogels[J]. CIESC Journal, 2020, 71(12): 5636-5643. | |
24 | Zhang S H, Lou X L, Xu R, et al. Hydrophobic cryogels prepared via cryo-polymerization as oil carriers for biosynthesis of sophorolipids[J]. Biochemical Engineering Journal, 2020, 161: 107677. |
25 | Torres C, Borman D, Sleigh A, et al. Application of three-dimensional CFD VOF to characterize free-surface flow over trapezoidal labyrinth weir and spillway[J]. Journal of Hydraulic Engineering, 2021, 147(3): 04021002. |
26 | Hanene Z, Alla H, Abdelouahab M, et al. A numerical model of an immiscible surfactant drop spreading over thin liquid layers using CFD/VOF approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124953. |
27 | Mohsin M, Kaushal D R. 3D CFD validation of invert trap efficiency for sewer solid management using VOF model[J]. Water Science and Engineering, 2016, 9(2): 106-114. |
28 | 张志君, 金柱男, 辛相锦, 等. 基于VOF方法的湿式离合器润滑油路CFD数值模拟[J]. 东北大学学报 (自然科学版), 2020, 41(5): 716-722. |
Zhang Z J, Jin Z N, Xin X J, et al. VOF method based CFD numerical simulation for wet clutch lubricating oil passage[J]. Journal of Northeastern University (Natural Science), 2020, 41(5): 716-722. | |
29 | Mohsin M, Kaushal D R. A 2D-CFD (VOF model) analysis of invert trap for bed load removal in an open rectangular sewer drain[J]. Particulate Science and Technology, 2017, 35(1): 54-66. |
30 | Liu C B, Zhu L, Li J, et al. Fabrication of superhydrophobic bionic surface integrating with VOF simulation studies of liquid drop impacting[J]. Microscopy Research and Technique, 2019, 82(5): 615-623. |
31 | Pan Z H, Weibel J A, Garimella S V. Spurious current suppression in VOF-CSF simulation of slug flow through small channels[J]. Numerical Heat Transfer Part A-Applications, 2015, 67(1): 1-12. |
32 | Chan E S, Lee B B, Ravindra P, et al. Prediction models for shape and size of Ca-alginate macrobeads produced through extrusion-dripping method[J]. Journal of Colloid and Interface Science, 2009, 338(1): 63-72. |
1 | Huang Y H, Chen H A, Chen C H, et al. Injectable gelatin/glucosamine cryogel microbeads as scaffolds for chondrocyte delivery in cartilage tissue engineering[J]. International Journal of Biological Macromolecules, 2023, 253(Pt 1): 126528. |
2 | Liu D L, Zhang H, Dong X F, et al. Effect of viscoelastic properties of cellulose nanocrystal/collagen hydrogels on chondrocyte behaviors[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 959409. |
3 | Pant T, Murarka V, Jain R, et al. Chitosan based microcarriers for cellular growth and biologics production[J]. Carbohydrate Polymer Technologies and Applications, 2021, 2: 100154. |
4 | Silva Couto P, Rotondi M C, Bersenev A, et al. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds[J]. Biotechnology Advances, 2020, 45: 107636. |
5 | Radmansouri M, Bahmani E, Sarikhani E, et al. Doxorubicin hydrochloride-loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release[J]. International Journal of Biological Macromolecules, 2018, 116: 378-384. |
6 | Li M G, Lin H Y, Xue B, et al. A novel amino-functionalized magnetic silica cryogel to rapidly capture and eliminate Cr (Ⅵ): its efficient performance and synergetic mechanism[J]. Materials Today Communications, 2023, 36: 106690. |
7 | Wang Q D, Asoh T A, Uyama H. Ultralight bacterial cellulose/polypropylene-graft-maleic anhydride composite cryogel for efficient oil/water separation[J]. Chemistry Letters, 2021, 50(1): 14-16. |
8 | 程昀, 丁俊杰, 纪红兵, 等. β-环糊精-纤维素基超交联微球吸附分离苯乙酮和1-苯乙醇[J]. 精细化工, 2023, 40(6): 1325-1331. |
Cheng Y, Ding J J, Ji H B, et al. Adsorptive separation of acetophenone and 1-phenylethanol by β-cyclodextrin-cellulose based hypercrosslinked microspheres[J]. Fine Chemicals, 2023, 40(6): 1325-1331. | |
9 | Wang J M, Song H C, Ren L F, et al. Study on the preparation of cellulose acetate separation membrane and new adjusting method of pore size[J]. Membranes, 2021, 12(1): 9. |
10 | Zhang W, Zhao F, Li Y B, et al. Suspension and transformation performance of poly(2-hydroxyethyl methacrylate)-based anion exchange cryogel beads with immobilized Lactobacillus paracasei cells as biocatalysts towards biosynthesis of phenyllactic acid in stirred tank bioreactors[J]. Chemical Engineering Research and Design, 2022, 181: 120-131. |
11 | Zhang W, Yang Y J, Guan T T, et al. Formation dynamics of cell-loading alginate droplets in the microtube dripping and cryo-cross-linking process for cell-entrapped cryogel beads as the biocatalysts toward phenyllactic acid biosynthesis[J]. Industrial & Engineering Chemistry Research, 2018, 57(21): 7291-7300. |
12 | 曲兴, 楼小玲, 张颂红, 等. 半疏水基质阴离子交换晶胶对α-酮异己酸的层析吸附特性[J]. 高校化学工程学报, 2022, 36(1): 46-52. |
Qu X, Lou X L, Zhang S H, et al. Chromatographic and adsorption characteristics of α-ketoisocaproate in semi-hydrophobic anion exchange croygel[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(1): 46-52. | |
13 | Hosseini M, Arasteh H, Afrouzi H H, et al. Numerical simulation of a falling droplet surrounding by air under electric field using VOF method: a CFD study[J]. Chinese Journal of Chemical Engineering, 2020, 28(12):2977-2984. |
14 | Meng X K, Yu Y H, Jin G Y. Numerical simulation and experimental verification of droplet generation in microfluidic digital PCR chip[J]. Micromachines, 2021, 12(4): 409. |
15 | 唐海. 液滴降落过程的数值研究[D]. 成都: 四川大学, 2007. |
[1] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[2] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[3] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[4] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[5] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[6] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[7] | 李紧, 张晓东, 邱杨挺, 姚成, 鲁锡存, 魏茹薇, 罗潇, 钱旭红, 杨有军. 带功能手柄的二苯并呫吨类染料(EC5)用于生物成像[J]. 化工学报, 2024, 75(4): 1687-1696. |
[8] | 范以薇, 刘威, 李盈盈, 王培霞, 张吉松. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
[9] | 司友明, 郑凌峰, 陈鹏忠, 樊江莉, 彭孝军. 新型锑氧簇光刻胶的性能与机理研究[J]. 化工学报, 2024, 75(4): 1705-1717. |
[10] | 徐安冉, 刘凯, 王娜, 赵振宇, 李洪, 高鑫. 强吸波催化剂协同微波能强化果糖脱水制5-羟甲基糠醛[J]. 化工学报, 2024, 75(4): 1565-1577. |
[11] | 江文钞, 徐兆超. 细胞器超分辨成像荧光染料[J]. 化工学报, 2024, 75(4): 1333-1354. |
[12] | 王书鹏, 杜健军, 姚瑶, 樊江莉, 彭孝军. 线粒体靶向的罗丹明衍生物用于肿瘤荧光成像[J]. 化工学报, 2024, 75(4): 1679-1686. |
[13] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[14] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
[15] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 130
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||