化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1565-1577.DOI: 10.11949/0438-1157.20240105
徐安冉1(), 刘凯1, 王娜1, 赵振宇1(
), 李洪1, 高鑫1,2(
)
收稿日期:
2024-01-23
修回日期:
2024-03-20
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
赵振宇,高鑫
作者简介:
徐安冉(1999—),男,硕士研究生,xuanran99@tju.edu.cn
基金资助:
Anran XU1(), Kai LIU1, Na WANG1, Zhenyu ZHAO1(
), Hong LI1, Xin GAO1,2(
)
Received:
2024-01-23
Revised:
2024-03-20
Online:
2024-04-25
Published:
2024-06-06
Contact:
Zhenyu ZHAO, Xin GAO
摘要:
利用硬模板法制备了中空多孔碳球(MHCS),系统研究了热处理温度、金属负载量、刻蚀前后对MHCS电磁参数的影响。从中选取高介电损耗值(ε″)的MHCS-800(ε″ = 213)作为催化剂载体,并以SCS-800(ε″ = 50)和SCS(ε″ = 0.08)作为对比样品,经磺化后用于催化果糖水解制5-羟甲基糠醛,根据在微波加热和常规油浴条件下的反应动力学探究了ε″对微波催化效果的影响。结果表明,在80 W微波功率辐照下使用MHCS-800-SO3H作为催化剂,5 min转化率即可达97.7%;反应速率常数(k)为0.76 min-1,是常规加热(k = 0.0847 min-1)的8.97倍,该催化剂相较于SCS-800-SO3H和SCS-SO3H的微波催化效果(k比常规分别提升了164.9%、11.9%)更加显著。以上研究结果源于中空多孔结构和高的石墨化程度相耦合更有利于在催化剂颗粒表面形成“热点”,从而加速催化反应。
中图分类号:
徐安冉, 刘凯, 王娜, 赵振宇, 李洪, 高鑫. 强吸波催化剂协同微波能强化果糖脱水制5-羟甲基糠醛[J]. 化工学报, 2024, 75(4): 1565-1577.
Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural[J]. CIESC Journal, 2024, 75(4): 1565-1577.
图1 常规加热和微波加热催化果糖水解反应装置1—连接管;2—磁子;3—红液温度计;4—油浴锅;5—冷凝管;6—微波腔;7—光纤温度计;8—带夹套的微波反应器;9—磁力搅拌器
Fig.1 Schematic illustration of experimental apparatuses for fructose dehydration under conventional heating and microwave irradiation
样品 | ε′ | ε″ | tanδ | 频率/GHz |
---|---|---|---|---|
MHCS-800-SO3H | 39 | 213 | 5.46 | 2.45 |
SCS-800-SO3H | 40 | 50 | 1.25 | 2.45 |
SCS-SO3H | 3 | 0.08 | 0.03 | 2.45 |
表1 不同吸波性能催化剂的介电参数
Table 1 Dielectric parameters of catalysts with different microwave absorbing properties
样品 | ε′ | ε″ | tanδ | 频率/GHz |
---|---|---|---|---|
MHCS-800-SO3H | 39 | 213 | 5.46 | 2.45 |
SCS-800-SO3H | 40 | 50 | 1.25 | 2.45 |
SCS-SO3H | 3 | 0.08 | 0.03 | 2.45 |
样 品 | 磺化前/% (质量分数) | 磺化后/% (质量分数) | ||
---|---|---|---|---|
Fe含量 | Co含量 | Fe含量 | Co含量 | |
MHCS-800-SO3H | 10.60 | 5.93 | 5.39 | 2.98 |
表2 MHCS-800-SO3H磺化前后铁和钴的含量
Table 2 Fe and Co contents of MHCS-800-SO3H before and after sulfonation
样 品 | 磺化前/% (质量分数) | 磺化后/% (质量分数) | ||
---|---|---|---|---|
Fe含量 | Co含量 | Fe含量 | Co含量 | |
MHCS-800-SO3H | 10.60 | 5.93 | 5.39 | 2.98 |
样 品 | 总酸度/(μmol/g) | Brønsted酸度/(μmol/g) | Lewis酸度/(μmol/g) |
---|---|---|---|
MHCS-800-SO3H | 74.51 | 9.67 | 64.84 |
SCS-800-SO3H | 80.96 | 11.64 | 69.32 |
SCS-SO3H | 80.84 | 13.93 | 66.91 |
表3 不同吸波性能催化剂的酸性
Table 3 Acidic properties of catalysts with different microwave absorbing properties
样 品 | 总酸度/(μmol/g) | Brønsted酸度/(μmol/g) | Lewis酸度/(μmol/g) |
---|---|---|---|
MHCS-800-SO3H | 74.51 | 9.67 | 64.84 |
SCS-800-SO3H | 80.96 | 11.64 | 69.32 |
SCS-SO3H | 80.84 | 13.93 | 66.91 |
图9 常规加热120℃条件下3种催化剂的果糖转化率(a)、5-HMF收率(b)及5-HMF选择性(c)
Fig.9 Fructose conversion rate (a), 5-HMF yield (b) and 5-HMF selectivity (c) of three catalysts under conventional heating at 120℃
图11 不同微波响应催化剂在常规加热和微波辐照下的催化效果
Fig.11 Catalytic performances of different microwave responsive catalysts under conventional heating and microwave irradiation
1 | Guest G, Cherubini F, Strømman A H. The role of forest residues in the accounting for the global warming potential of bioenergy[J]. GCB Bioenergy, 2013, 5(4): 459-466. |
2 | Liu Y P, Pan C, Qiu X M, et al. Oxidative esterification of 5-hydroxymethylfurfural to dimethyl 2,5-furandicarboxylate over Au-supported poly(ionic liquid)s[J]. Fuel, 2024, 359: 130354. |
3 | Yabushita M, Kobayashi H, Fukuoka A. Catalytic transformation of cellulose into platform chemicals[J]. Applied Catalysis B: Environmental, 2014, 145: 1-9. |
4 | Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554. |
5 | Zhao D Y, Su T, Len C, et al. Recent advances in the oxidative esterification of 5-hydroxymethylfurfural to furan-2,5-dimethylcarboxylate[J]. Green Chemistry, 2022, 24(18): 6782-6789. |
6 | Cao Z, Fan Z X, Chen Y, et al. Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates[J]. Applied Catalysis B: Environmental, 2019, 244: 170-177. |
7 | Ma X Y, Ren X L, Guo X D, et al. Multifunctional iron-based metal-organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy[J]. Biomaterials, 2019, 214: 119223. |
8 | Xiao S N, Zhou C, Ye X Y, et al. Solid-phase microwave reduction of WO3 by GO for enhanced synergistic photo-Fenton catalytic degradation of bisphenol A[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32604-32614. |
9 | Zhao Z Y, Li H, Zhao K, et al. Microwave-assisted synthesis of MOFs: rational design via numerical simulation[J]. Chemical Engineering Journal, 2022, 428: 131006. |
10 | Thostenson E T, Chou T W. Microwave processing: fundamentals and applications[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1055-1071. |
11 | Ji T, Liu C, Lu X H, et al. Coupled chemical and thermal drivers in microwaves toward ultrafast HMF oxidation to FDCA[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11493-11501. |
12 | Li H, Zhao Z Y, Xiouras C, et al. Fundamentals and applications of microwave heating to chemicals separation processes[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109316. |
13 | De Martino L, Caputo L, Amato G, et al. Postharvest microwave drying of basil (Ocimum basilicum L.): the influence of treatments on the quality of dried products[J]. Foods, 2022, 11(7): 1029. |
14 | Ahmed F E, Lalia B S, Hashaikeh R, et al. Alternative heating techniques in membrane distillation: a review[J]. Desalination, 2020, 496: 114713. |
15 | Gronnow M J, White R J, Clark J H, et al. Energy efficiency in chemical reactions: a comparative study of different reaction techniques[J]. Organic Process Research & Development, 2005, 9(4): 516-518. |
16 | Ji T, Tu R, Mu L W, et al. Enhancing energy efficiency in saccharide-HMF conversion with core/shell structured microwave responsive catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4352-4358. |
17 | Santos E J G, Kaxiras E. Electric-field dependence of the effective dielectric constant in graphene[J]. Nano Letters, 2013, 13(3): 898-902. |
18 | Liang J Y, Wang C C, Lu S Y. Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(48): 24453-24462. |
19 | Liu F, Cheng Y, Tan J C, et al. Carbon nanomaterials with hollow structures: a mini-review[J]. Frontiers in Chemistry, 2021, 9: 668336. |
20 | Cui L L, Xu H P, An Y R, et al. N, S co-doped lignin-based carbon microsphere functionalized graphene hydrogel with “sphere-in-layer” interconnection as electrode materials for supercapacitor and molecularly imprinted electrochemical sensors[J]. Advanced Powder Technology, 2022, 33(6): 103571. |
21 | Qin M, Zhang L M, Wu H J. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10): 2105553. |
22 | Metaxas A C, Meredith R J. Industrial Microwave Heating[M]. London: The Institution of Engineering and Technology, 1983: 73. |
23 | Xu J J, Bian C, Sun J Y, et al. Heterostructure tailoring of carbon nanotubes grown on prismatic NiCo clusters for high-efficiency electromagnetic absorption[J]. Journal of Colloid and Interface Science, 2023, 634: 185-194. |
24 | Ren L G, Wang Y Q, Zhang X, et al. Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(3): 504-514. |
25 | Wang B L, Fu Y G, Li J, et al. Carbon-encapsulated Co7Fe3 nanocomposites with high intensity and ultra-wideband microwave absorption[J]. Carbon, 2023, 202: 101-111. |
26 | Cheng Y, Ma Y Z, Dang Z E, et al. The efficient absorption of electromagnetic waves by tunable N-doped multi-cavity mesoporous carbon microspheres[J]. Carbon, 2023, 201: 1115-1125. |
27 | Fan B X, Xing L, He Q M, et al. Selective synthesis and defects steering superior microwave absorption capabilities of hollow graphitic carbon nitride micro-polyhedrons[J]. Chemical Engineering Journal, 2022, 435: 135086. |
28 | Lu X K, Li X, Zhu W J, et al. Construction of embedded heterostructures in biomass-derived carbon frameworks for enhancing electromagnetic wave absorption[J]. Carbon, 2022, 191: 600-609. |
29 | Zhang X, Yan F, Zhang S, et al. Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24920-24929. |
30 | Zhang M, Ling H L, Wang T, et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism[J]. Nano-Micro Letters, 2022, 14(1): 157. |
31 | Xie L, Li X F, Deng J, et al. Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures[J]. Green Chemistry, 2018, 20(20): 4596-4601. |
32 | Xu H L, Yin X W, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6332-6341. |
33 | Zhang M N, Song Y, Li W, et al. CO2-assisted synthesis of hierarchically porous carbon as a supercapacitor electrode and dye adsorbent[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1141-1151. |
34 | Tan R Y, Zhou J T, Yao Z J, et al. Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption[J]. Journal of Alloys and Compounds, 2021, 857: 157568. |
35 | Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130. |
36 | Liu P B, Wang Y, Zhang G Z, et al. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction[J]. Advanced Functional Materials, 2022, 32(33): 2202588. |
37 | Cheng Y, Zhao H Q, Zhao Y, et al. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response[J]. Carbon, 2020, 161: 870-879. |
38 | Qi T B H, Yao Z J, Zhou J T, et al. Interfacial polymerization preparation of polyaniline fibers/Co0.2Ni0.4Zn0.4Fe2O4 urchin-like composite with superior microwave absorption performance[J]. Journal of Alloys and Compounds, 2018, 769: 669-677. |
39 | Deshan A D K, Moghaddam L, Atanda L, et al. High conversion of concentrated sugars to 5-hydroxymethylfurfural over a metal-free carbon catalyst: role of glucose-fructose dimers[J]. ACS Omega, 2023, 8(43): 40442-40455. |
40 | Yao Y, Guo Y S, Du W, et al. In situ synthesis of sulfur-doped graphene quantum dots decorated carbon nanoparticles hybrid as metal-free electrocatalyst for oxygen reduction reaction[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17695-17705. |
41 | Kang S M, Fu J X, Zhang G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 340-362. |
42 | Qi X H, Watanabe M, Aida T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry, 2008, 10(7): 799-805. |
[1] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
[2] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[3] | 王瑞瑞, 金颖, 刘玉梅, 李梦悦, 朱胜文, 闫瑞一, 刘瑞霞. 聚合离子液体设计及催化环己烷选择性氧化性能研究[J]. 化工学报, 2024, 75(4): 1552-1564. |
[4] | 程骁恺, 历伟, 王靖岱, 阳永荣. 镍催化可控/活性自由基聚合反应研究进展[J]. 化工学报, 2024, 75(4): 1105-1117. |
[5] | 程婷, 焦纬洲, 刘有智. 功能性填料在超重力旋转填料床中的应用和研究进展[J]. 化工学报, 2024, 75(4): 1414-1428. |
[6] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
[7] | 韩宇, 周乐, 张鑫, 罗勇, 孙宝昌, 邹海魁, 陈建峰. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542. |
[8] | 范以薇, 刘威, 李盈盈, 王培霞, 张吉松. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
[9] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[10] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[11] | 王成秀, 宋大山, 李之辉, 杨潇, 蓝兴英, 高金森, 徐春明. Geldart C类脱硫灰颗粒在环流耦合提升管内稳定流动特性[J]. 化工学报, 2024, 75(4): 1485-1496. |
[12] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[13] | 臧雅晴, 张益钧, 王金钊, 王倩, 李殿卿, 冯俊婷, 段雪. 基于反应耦合的低能耗水合氯化钙脱水制无水氯化钙[J]. 化工学报, 2024, 75(4): 1508-1518. |
[14] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[15] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||