1 |
Shoyama M, Kawata T, Yasuda M, et al. Particle electrification and levitation in a continuous particle feed and dispersion system with vibration and external electric fields[J]. Advanced Powder Technology, 2018, 29(9): 1960-1967.
|
2 |
黄正梁, 张鹏, 杨遥, 等. 外加电场对静电流化床中颗粒运动与床层粘壁的调控机制[J]. 化工学报, 2021, 72(9): 4544-4552.
|
|
Huang Z L, Zhang P, Yang Y, et al. Effects of external DC/AC electric fields on particle motions and wall sticking in fluidized bed with electrostatics[J]. CIESC Journal, 2021, 72(9): 4544-4552.
|
3 |
Drews A M, Cartier C A, Bishop K J M. Contact charge electrophoresis: experiment and theory[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(13): 3808-3814.
|
4 |
Bishop K J M, Drews A M, Cartier C A, et al. Contact charge electrophoresis: fundamentals and microfluidic applications[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(22): 6315-6327.
|
5 |
Dou Y, Cartier C A, Fei W J, et al. Directed motion of metallodielectric particles by contact charge electrophoresis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(49): 13167-13173.
|
6 |
Drews A M, Lee H Y, Bishop K J M. Ratcheted electrophoresis for rapid particle transport[J]. Lab on a Chip, 2013, 13(22): 4295-4298.
|
7 |
Kawamoto H. Electrostatic cleaning equipment for dust removal from soiled solar panels[J]. Journal of Electrostatics, 2019, 98: 11-16.
|
8 |
Kawamoto H, Shibata T. Electrostatic cleaning system for removal of sand from solar panels[J]. Journal of Electrostatics, 2015, 73: 65-70.
|
9 |
Kawamoto H, Seki K, Kuromiya N. Mechanism of travelling-wave transport of particles[J]. Journal of Physics D Applied Physics, 2006, 39(6): 1249-1256.
|
10 |
Kawamoto H, Hashime S. Practical performance of an electrostatic cleaning system for removal of lunar dust from optical elements utilizing electrostatic traveling wave[J]. Journal of Electrostatics, 2018, 94: 38-43.
|
11 |
Mazumder M, Horenstein M N, Stark J, et al. Characterization of electrodynamic screen performance for dust removal from solar panels and solar hydrogen generators[J]. IEEE Transactions on Industry Applications, 2013, 49(4): 1793-1800.
|
12 |
Mazumder M K, Horenstein M N, Joglekar N R, et al. Mitigation of dust impact on solar collectors by water-free cleaning with transparent electrodynamic films: progress and challenges[J]. IEEE Journal of Photovoltaics, 2017, 7(5): 1342-1353.
|
13 |
Sayyah A, Eriksen R S, Horenstein M N, et al. Performance analysis of electrodynamic screens based on residual particle size distribution[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 221-229.
|
14 |
Liu G Q, Marshall J S. Effect of particle adhesion and interactions on motion by traveling waves on an electric curtain[J]. Journal of Electrostatics, 2010, 68(2): 179-189.
|
15 |
Liu G, Marshall J S. Particle transport by standing waves on an electric curtain[J]. Journal of Electrostatics, 2010, 68(4): 289-298.
|
16 |
Aranson I S, Blair D, Kalatsky V A, et al. Electrostatically driven granular media: phase transitions and coarsening[J]. Physical Review Letters, 2000, 84(15): 3306-3309.
|
17 |
Aranson I S, Tsimring L S. Patterns and collective behavior in granular media: theoretical concepts[J]. Reviews of Modern Physics, 2006, 78(2): 641-692.
|
18 |
Agarwal A K, Yethiraj A. Low-density ordered phase in Brownian dipolar colloidal suspensions[J]. Physical Review Letters, 2009, 102(19): 198301.
|
19 |
Kumar A, Khusid B, Qiu Z Y, et al. New electric-field-driven mesoscale phase transitions in polarized suspensions[J]. Physical Review Letters, 2005, 95(25): 258301.
|
20 |
Park J S, Saintillan D. Electric-field-induced ordering and pattern formation in colloidal suspensions[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83(4 Pt 1): 041409.
|
21 |
Shoyama M, Matsusaka S. Mechanism of disintegration of charged agglomerates in non-uniform electric field[J]. Chemical Engineering Science, 2019, 198: 155-164.
|
22 |
Shoyama M, Nishida S, Matsusaka S. Quantitative analysis of agglomerates levitated from particle layers in a strong electric field[J]. Advanced Powder Technology, 2019, 30(10): 2052-2058.
|
23 |
Salvatierra L M, Dammig Quiña P L, Kovalevski L I, et al. Effect of grain size on the forces governing the dynamic behavior of electrostatically driven powder media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(6): 062204.
|
24 |
Salvatierra L M, Cortés Bracho O L, Dammig Quiña P L, et al. Frequency dependent structures in an electrostatically driven powder medium[J]. Chemical Physics Letters, 2009, 481(4/5/6): 194-197.
|
25 |
Marshall J S, Li S Q. Adhesive Particle Flow: A Discrete-Element Approach[M]. Cambridge: Cambridge University Press, 2014.
|
26 |
Li S Q, Marshall J S, Liu G Q, et al. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering[J]. Progress in Energy and Combustion Science, 2011, 37(6): 633-668.
|
27 |
Qian X Y, Ruan X, Li S Q. Effect of interparticle dipolar interaction on pore clogging during microfiltration[J]. Physical Review E, 2022, 105(1/2): 015102.
|
28 |
Ruan X, Chen S, Li S Q. Effect of long-range Coulomb repulsion on adhesive particle agglomeration in homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2021, 915: A131.
|