化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2909-2916.DOI: 10.11949/0438-1157.20240239
收稿日期:
2024-02-24
修回日期:
2024-04-06
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
郑嘉男
作者简介:
杨明军(1982—),男,博士,教授,yangmj@dlut.edu.cn
基金资助:
Mingjun YANG1(), Guangjun GONG1, Jianan ZHENG2(), Yongchen SONG1
Received:
2024-02-24
Revised:
2024-04-06
Online:
2024-08-25
Published:
2024-08-21
Contact:
Jianan ZHENG
摘要:
天然气水合物(又名可燃冰)是海底储层常见的一种非常规浅层气藏,具备泥质、低渗等特点,实现其安全高效开发具有重要现实意义。在水合物开采过程中,气体渗流及水合物分解行为都会发生动态变化,两者的复杂耦合作用决定了水合物储层的产气效率,但目前缺乏对其动态耦合预测模型的研究。因此,需要进一步分析天然气水合物储层降压开采过程中气体渗流与水合物分解行为。使用南海土在岩心夹持器内重塑了泥质低渗的水合物储层,探明了降压开采特性以及储层压力的影响,并创新性提出包含储层压力、水合物分解以及产气流量等关键指标的水合物降压开采预测模型,实现了泥质低渗水合物储层渗流与分解时空关联与高精度预测,相关系数(R2)均为99%以上。本结果可为实地优化调控降压开采水合物提供理论指导。
中图分类号:
杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916.
Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization[J]. CIESC Journal, 2024, 75(8): 2909-2916.
材料名称 | 供应商 | 纯度/% |
---|---|---|
甲烷气体 | 大连大特气体有限公司 | 99.999 |
南海海洋土 | 中海油研究总院 | — |
去离子水 | 实验室自制 | — |
表1 实验材料及相关参数
Table 1 Experimental materials and related parameters
材料名称 | 供应商 | 纯度/% |
---|---|---|
甲烷气体 | 大连大特气体有限公司 | 99.999 |
南海海洋土 | 中海油研究总院 | — |
去离子水 | 实验室自制 | — |
工况 | 气源压力/MPa | 水合物饱和度/% | nave,0 /(mmol·mm-1) | G/(mmol·(mm·min) -1) | t0 /min |
---|---|---|---|---|---|
1 | 5.4 | 31.1 | 0.0415 | 0.000456 | 81 |
2 | 6.4 | 32.5 | 0.0452 | 0.000569 | 79 |
3 | 7.4 | 33.7 | 0.0571 | 0.000892 | 64 |
表2 实验工况
Table 2 Experimental conditions
工况 | 气源压力/MPa | 水合物饱和度/% | nave,0 /(mmol·mm-1) | G/(mmol·(mm·min) -1) | t0 /min |
---|---|---|---|---|---|
1 | 5.4 | 31.1 | 0.0415 | 0.000456 | 81 |
2 | 6.4 | 32.5 | 0.0452 | 0.000569 | 79 |
3 | 7.4 | 33.7 | 0.0571 | 0.000892 | 64 |
1 | Bai Y J, Clarke M A, Hou J, et al. Study on improved efficiency of induced fracture in gas hydrate reservoir depressurization development[J]. Energy, 2023, 278: 127853. |
2 | Wei Y, Maeda N. Dry water as a promoter for gas hydrate formation: a review[J]. Molecules, 2023, 28(9): 3731. |
3 | Zheng J N, Yang M J. Experimental investigation on novel desalination system via gas hydrate[J]. Desalination, 2020, 478: 114284. |
4 | 庞维新, 李清平, 周守为. 天然气水合物开发研究现状和发展战略分析[J]. 国际石油经济, 2022, 30(12): 33-41. |
Pang W X, Li Q P, Zhou S W. Research and development strategy of natural gas hydrate development[J]. International Petroleum Economics, 2022, 30(12): 33-41. | |
5 | Zhao J, Zheng J N, Kang T Q, et al. Dynamic permeability and gas production characteristics of methane hydrate-bearing marine muddy cores: experimental and modeling study[J]. Fuel, 2021, 306: 121630. |
6 | Yoneda J, Oshima M, Kida M, et al. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 2019, 108: 524-536. |
7 | Shao Z L, Liu H, Lin Q B, et al. Heat and mass transfer analysis during the process of methane hydrate dissociation by thermal stimulation[J]. Fuel, 2024, 362: 130790. |
8 | Gong G J, Zhao G J, Pang W X, et al. Review of hydrate-bearing sediment permeability for natural gas hydrate exploitation: measurement and application development[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111217. |
9 | Wu Z R, Gu Q K, Li G J, et al. Effect of decomposition water content of natural gas hydrate on permeability and gas production of clay sediments based on numerical simulation[J]. Journal of Natural Gas Science and Engineering, 2022, 108: 104826. |
10 | Konno Y, Yoneda J, Egawa K, et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 487-495. |
11 | 周守为, 李清平, 朱军龙, 等. 中国南海天然气水合物开发面临的挑战与思考[J]. 天然气工业, 2023, 43(11): 152-163. |
Zhou S W, Li Q P, Zhu J L, et al. Challenges and considerations for the development of natural gas hydrates in South China Sea[J]. Natural Gas Industry, 2023, 43(11): 152-163. | |
12 | Zhao J, Zheng J N, Ma S H, et al. Formation and production characteristics of methane hydrates from marine sediments in a core holder[J]. Applied Energy, 2020, 275: 115393. |
13 | Wu Z R, Zhang K, Wang L, et al. Experimental study on the evolution of compressibility and gas permeability of sediments after hydrate decomposition under effective stress[J]. Energy & Fuels, 2023, 37(2): 1033-1043. |
14 | Yuan Q M, Kong L, Liang Q Y, et al. Mechanical characteristics of gas hydrate-bearing sediments: an experimental study from the South China Sea[J]. Journal of Marine Science and Engineering, 2024, 12(2): 301. |
15 | Wu Z R, Liu W G, Zheng J N, et al. Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments[J]. Applied Energy, 2020, 261: 114479. |
16 | 李清平, 周守为, 赵佳飞, 等. 天然气水合物开采技术研究现状与展望[J]. 中国工程科学, 2022, 24(3): 214-224. |
Li Q P, Zhou S W, Zhao J F, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Strategic Study of CAE, 2022, 24(3): 214-224. | |
17 | Dong S, Yang M J, Chen M K, et al. Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization[J]. Energy, 2022, 241: 122902. |
18 | Tian M R, Song Y C, Pang W X, et al. Temperature response mechanism of methane hydrate decomposition coupled with icing and melting under variational thermodynamic conditions[J]. Fuel, 2023, 350: 128696. |
19 | Tian M R, Song Y C, Zheng J N, et al. Effects of temperature gradient on methane hydrate formation and dissociation processes and sediment heat transfer characteristics[J]. Energy, 2022, 261: 125220. |
20 | Sun X, Luo T T, Wang L, et al. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization[J]. Applied Energy, 2019, 250: 7-18. |
21 | Fang B, Lv T, Li W, et al. Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions[J]. Energy, 2024, 288: 129755. |
22 | Babu P, Nambiar A, He T B, et al. A review of clathrate hydrate based desalination to strengthen energy-water nexus[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8093-8107. |
23 | Zhao J, Zheng J N, Dong S, et al. Gas production enhancement effect of underlying gas on methane hydrates in marine sediments by depressurization[J]. Fuel, 2022, 310: 122415. |
24 | Wu Z R, Li Y H, Sun X, et al. Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates[J]. Marine and Petroleum Geology, 2018, 91: 373-380. |
25 | Gong G J, Zhao G J, Pang W X, et al. Continuous measurement of gas permeability in non-homogeneous hydrate reservoirs under effective pressure via a novel apparatus[J]. Gas Science and Engineering, 2023, 118: 205091. |
26 | 李淑霞, 郭尚平, 陈月明, 等. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议[J]. 力学学报, 2020, 52(3): 828-842. |
Li S X, Guo S P, Chen Y M, et al. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 828-842. | |
27 | Yang M J, Pang Q D, Gong G J, et al. Experimental analysis on thermodynamic and kinetic characteristics of water-saturated natural gas hydrates by depressurization decomposition[J]. Energy Technology, 2024, 12(3): 2300863. |
28 | Gaidukova O S, Dorokhov V V, Misyura S Y, et al. Dissociation and ignition of methane hydrate when in contact with typical sources of fire hazard[J]. Powder Technology, 2023, 427: 118776. |
29 | Pang Q D, Yang M J, Gong G J, et al. Production characteristics of water-saturated methane hydrates under different thermodynamic conditions[J]. Energy & Fuels, 2024, 38(4): 3057-3065. |
30 | Antonov D V, Donskoy I G, Gaidukova O S, et al. Dissociation of gas hydrates in different heating schemes[J]. Thermal Science and Engineering Progress, 2023, 40: 101774. |
31 | Qi Y, Sun Y H, Li B, et al. Permeability damage and hydrate dissociation barrier caused by invaded fracturing fluid during hydrate reservoir stimulation[J]. Gas Science and Engineering, 2023, 116: 205051. |
32 | Wang X C, Sun Y H, Chen H K, et al. Experimental study on the depressurization of methane hydrate in the clayey silt sediments via hydraulic fracturing[J]. Energy & Fuels, 2023, 37(6): 4377-4390. |
33 | Gong G J, Yang M J, Pang W X, et al. Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs[J]. Energy, 2024, 292: 130446. |
34 | Mao M H, Yan K F, Li X S, et al. Review of heat transfer characteristics of natural gas hydrate[J]. Energies, 2024, 17(3): 717. |
[1] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[2] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[3] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[4] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[5] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[6] | 童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959. |
[7] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[8] | 黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555. |
[9] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
[10] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[11] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[12] | 常成功, 宋皓楠, 雷飞霞, 狄子琛, 程芳琴. 高炉喷吹重整焦炉气工艺分析及减碳潜力研究[J]. 化工学报, 2024, 75(6): 2344-2352. |
[13] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[14] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[15] | 王迪, 陈伟倩, 孙灵芳, 周云龙. 光热-跨临界压缩二氧化碳储能循环动态特性研究[J]. 化工学报, 2024, 75(5): 2047-2059. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||