化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2840-2851.DOI: 10.11949/0438-1157.20240234
曲玖哲1(), 杨鹏2, 杨绪飞3, 张伟3(), 宇波3, 孙东亮3, 王晓东1
收稿日期:
2024-03-01
修回日期:
2024-04-26
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
张伟
作者简介:
曲玖哲(1995—),男,博士研究生,qujiuzhe@163.com
基金资助:
Jiuzhe QU1(), Peng YANG2, Xufei YANG3, Wei ZHANG3(), Bo YU3, Dongliang SUN3, Xiaodong WANG1
Received:
2024-03-01
Revised:
2024-04-26
Online:
2024-08-25
Published:
2024-08-21
Contact:
Wei ZHANG
摘要:
为实现硅基微通道流动沸腾换热强化,分别设计并加工了具有并联微通道、稀疏微柱簇和致密微柱簇结构的微通道换热器,以丙酮为工质开展热通量200~650 kW·m-2的流动沸腾实验。结果表明,相较于并联微通道,稀疏微柱簇和致密微柱簇微通道具有更强的两相换热性能;在质量流速43 kg·m-2·s-1的条件下,稀疏微柱簇微通道与致密微柱簇微通道的平均传热系数分别可达到18.6和17.8 kW·m-2·K-1,稀疏微柱簇微通道PEC最大可达到1.49。微柱簇阵列随热通量的增加呈现出三种不同流型,可视化研究表明,稀疏微柱簇内产生的汽相更倾向发生微柱簇绕流,而致密微柱簇内产生的汽相更倾向包裹住微柱簇,这使得前者表现出更强的两相换热性能。
中图分类号:
曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851.
Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays[J]. CIESC Journal, 2024, 75(8): 2840-2851.
工质 | 质量流速 /(kg·m-2·s-1) | 热通量 /(kW·m-2) | 入口温度/℃ | 芯片类型 |
---|---|---|---|---|
丙酮 | 43 | 200~650 | 40 ± 3 | 并联微通道(PMC) 稀疏微柱簇微通道(SPFMC) 致密微柱簇微通道(DPFMC) |
表1 硅基微柱簇阵列微通道流动沸腾实验条件
Table 1 Experimental conditions for flow boiling in microchannels of silicon-based micropillar cluster arrays
工质 | 质量流速 /(kg·m-2·s-1) | 热通量 /(kW·m-2) | 入口温度/℃ | 芯片类型 |
---|---|---|---|---|
丙酮 | 43 | 200~650 | 40 ± 3 | 并联微通道(PMC) 稀疏微柱簇微通道(SPFMC) 致密微柱簇微通道(DPFMC) |
主要结构参数 | 并联 微通道 | 稀疏微柱簇 微通道 | 致密微柱簇 微通道 |
---|---|---|---|
固液接触面积 /m2 | 5.95×10-5 | 1.03×10-4 | 9.50×10-5 |
投影面积 /m2 | 2.88×10-5 | 4.50×10-5 | 4.52×10-5 |
最大流通截面积 /m2 | 1.92×10-7 | 3.12×10-7 | 3.12×10-7 |
微柱簇阵列分布 | — | 23(列)×8(行) | 34(列)×11(行) |
微柱簇的微柱数量 /根 | 0 | 125 | 53 |
芯片微柱总数 /根 | 0 | 23000 | 19822 |
湿周 /m | 4.96×10-3 | 4.06×10-3 | 4.06×10-3 |
当量直径 /m | 2.61×10-5 | 3.92×10-5 | 3.92×10-5 |
表2 硅基芯片主要结构参数
Table 2 Main structural parameters of the experimental silicon-based chip
主要结构参数 | 并联 微通道 | 稀疏微柱簇 微通道 | 致密微柱簇 微通道 |
---|---|---|---|
固液接触面积 /m2 | 5.95×10-5 | 1.03×10-4 | 9.50×10-5 |
投影面积 /m2 | 2.88×10-5 | 4.50×10-5 | 4.52×10-5 |
最大流通截面积 /m2 | 1.92×10-7 | 3.12×10-7 | 3.12×10-7 |
微柱簇阵列分布 | — | 23(列)×8(行) | 34(列)×11(行) |
微柱簇的微柱数量 /根 | 0 | 125 | 53 |
芯片微柱总数 /根 | 0 | 23000 | 19822 |
湿周 /m | 4.96×10-3 | 4.06×10-3 | 4.06×10-3 |
当量直径 /m | 2.61×10-5 | 3.92×10-5 | 3.92×10-5 |
直接测量参数 | 不确定度 | 计算参数 | 不确定度 |
---|---|---|---|
硅基芯片加工尺寸 | ± 10 nm | 质量流速 | ± 5.0% |
热电偶温度 | ± 0.41℃ | 热通量 | ± 5.4% |
红外温度值 | ± 0.2℃(校准后) | 传热系数 | ± 1.6% |
加热电压 | 读数值的 ± 0.02% | ||
压力(量程:0~500 kPa) | 满量程的 ± 0.055% | ||
压差(量程:0~5 kPa) | 满量程的 ± 0.055% | ||
质量流量(量程:0~9 kg·s-1) | 满量程的 ± 0.2% |
表3 直接测量参数与计算参数的最大相对不确定度
Table 3 The relative uncertainties of the measured and calculated parameters
直接测量参数 | 不确定度 | 计算参数 | 不确定度 |
---|---|---|---|
硅基芯片加工尺寸 | ± 10 nm | 质量流速 | ± 5.0% |
热电偶温度 | ± 0.41℃ | 热通量 | ± 5.4% |
红外温度值 | ± 0.2℃(校准后) | 传热系数 | ± 1.6% |
加热电压 | 读数值的 ± 0.02% | ||
压力(量程:0~500 kPa) | 满量程的 ± 0.055% | ||
压差(量程:0~5 kPa) | 满量程的 ± 0.055% | ||
质量流量(量程:0~9 kg·s-1) | 满量程的 ± 0.2% |
1 | Moore G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85. |
2 | Ye P D, Ernst T, Khare M V. The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore's law[J]. IEEE Spectrum, 2019, 56(8): 30-35. |
3 | Herwig H. High heat flux cooling of electronics: the need for a paradigm shift[J]. Journal of heat transfer, 2013, 135(11): 111011-111013. |
4 | Mudawar I. Recent advances in high-flux, two-phase thermal management[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021012. |
5 | 汤志轩, 郭文华, 吴思远, 等. 微通道蒸发器优化两相制冷剂分配及沸腾传热研究进展[J]. 化工学报, 2023, 74(10): 4020-4036. |
Tang Z X, Guo W H, Wu S Y, et al. Research progress on optimizing two-phase refrigerant distribution and boiling heat transfer in microchannel evaporators[J]. CIESC Journal, 2023, 74(10): 4020-4036. | |
6 | Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
7 | 徐健, 张东辉, 黄俊, 等. 结构参数对烧结微通道流动沸腾性能的影响[J]. 化工学报, 2023, 74(11): 4548-4558. |
Xu J, Zhang D H, Huang J, et al. Effect of structural parameters on flow boiling performance of sintered microchannels[J]. CIESC Journal, 2023, 74(11): 4548-4558. | |
8 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
9 | Lee J, Mudawar I. Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(2): 453-465. |
10 | Deng D X, Xie Y L, Chen L, et al. Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling[J]. Energy, 2019, 181: 954-963. |
11 | Gilmore N, Timchenko V, Menictas C. Microchannel cooling of concentrator photovoltaics: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 1041-1059. |
12 | Deng D X, Wan W, Shao H R, et al. Effects of operation parameters on flow boiling characteristics of heat sink cooling systems with reentrant porous microchannels[J]. Energy Conversion and Management, 2015, 96: 340-351. |
13 | Fang Y D, Yang W L, Xu D, et al. Experimental investigation on flow boiling characteristics of R1233zd(E) in a parallel mini-channel heat sink for the application in battery thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121591. |
14 | Kingston T A, Weibel J A, Garimella S V. Ledinegg instability-induced temperature excursion between thermally isolated, heated parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 132: 550-556. |
15 | Mohammed Adham A, Mohd-Ghazali N, Ahmad R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 614-622. |
16 | Zhang X L, Ji Z, Wang J F, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
17 | Ma X, Ji X Y, Wang J Y, et al. Flow boiling heat transfer characteristics on micro-pin-finned surfaces in a horizontal narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123071. |
18 | Xu J L, Yu X J, Jin W. Porous-wall microchannels generate high frequency“eye-blinking”interface oscillation, yielding ultra-stable wall temperatures[J]. International Journal of Heat and Mass Transfer, 2016, 101: 341-353. |
19 | Zong L X, Xia G D, Jia Y T, et al. Flow boiling instability characteristics in microchannels with porous-wall[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118863. |
20 | Jia Y T, Xia G D, Zong L X, et al. A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2018, 127: 818-833. |
21 | Ma A X, Wei J J, Yuan M Z, et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2925-2931. |
22 | Law M, Lee P S. A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 797-810. |
23 | Koşar A, Peles Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6): 1018-1034. |
24 | Reeser A, Bar-Cohen A, Hetsroni G. High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays[J]. International Journal of Heat and Mass Transfer, 2014, 78: 974-985. |
25 | Wan W, Deng D X, Huang Q S, et al. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering, 2017, 114: 436-449. |
26 | Xu J L, Liu G H, Zhang W, et al. Seed bubbles stabilize flow and heat transfer in parallel microchannels[J]. International Journal of Multiphase Flow, 2009, 35(8): 773-790. |
27 | 滕文强. 单管中R32的沸腾数值模拟与实验研究[D]. 上海: 上海海洋大学, 2021. |
Teng W Q. Numerical simulation and experimental study of R32 boiling in a single tube[D]. Shanghai: Shanghai Ocean University, 2021. | |
28 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
29 | Qu W L, Mudawar I. Prediction and measurement of incipient boiling heat flux in micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 3933-3945. |
30 | Li J, Cheng P. Bubble cavitation in a microchannel[J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2689-2698. |
31 | Wu H Y, Cheng P. Three boiling instability modes in silicon microchannels[C]//ASME 2003 Heat Transfer Summer Conference. Las Vegas, Nevada, USA, 2008: 631-637. |
32 | Lin L W. Microscale thermal bubble formation: thermophysical phenomena and applications[J]. Microscale Thermophysical Engineering, 1998, 2(2): 71-85. |
[1] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[2] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[3] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[4] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[5] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[6] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[7] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[8] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[9] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
[10] | 赵赫, 费滢洁, 朱春英, 付涛涛, 马友光. 高黏体系中纳米颗粒稳定气泡的形变及破裂行为[J]. 化工学报, 2024, 75(6): 2180-2189. |
[11] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[12] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[13] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[14] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[15] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||