化工学报 ›› 2025, Vol. 76 ›› Issue (1): 141-150.DOI: 10.11949/0438-1157.20240765
收稿日期:
2024-07-08
修回日期:
2024-08-13
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
张建文
作者简介:
李彦(1993—),男,博士研究生,charlesliyan@163.com
基金资助:
Yan LI1(), Hongli GUO2, Guoqing SU1, Jianwen ZHANG1(
)
Received:
2024-07-08
Revised:
2024-08-13
Online:
2025-01-25
Published:
2025-02-08
Contact:
Jianwen ZHANG
摘要:
空冷器是加氢过程的重要换热设备,因管束腐蚀泄漏导致在役时间远低于设计寿命的问题普遍存在,其失效机理需要深入探究。针对某石化厂分馏塔顶空冷器管束腐蚀泄漏问题进行了CFD模拟研究。结果表明,复杂的流场分布是导致空冷器管束冲刷腐蚀泄漏的主要原因。具体来说,管箱内部旋涡的存在使得管束内流体的速度,流体与壁面的冲击角度,以及气液两相分布情况各异,这是导致空冷器泄漏管束分布不均的重要原因。以实际泄漏管束为例进行了腐蚀分析,结果表明冲击角度以及液相分布是影响空冷器冲刷腐蚀的关键因素,气液两相冲刷腐蚀是导致管束泄漏的根本原因。最后根据研究结果从多相流动的角度提出了空冷器冲刷腐蚀机理。
中图分类号:
李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150.
Yan LI, Hongli GUO, Guoqing SU, Jianwen ZHANG. Gas-liquid two-phase flow and erosion-corrosion in air cooler of hydrogenation unit[J]. CIESC Journal, 2025, 76(1): 141-150.
网格数量/个 | 第一排平均速度/(m/s) | 误差/% |
---|---|---|
3.25×106 | 34.25 | 16 |
4.38×106 | 32.56 | 11 |
5.22×106 | 30.24 | 2.8 |
5.63×106 | 29.55 | 0.4 |
6.21×106 | 29.41 | — |
表1 网格无关性分析
Table 1 Grid-independent analysis
网格数量/个 | 第一排平均速度/(m/s) | 误差/% |
---|---|---|
3.25×106 | 34.25 | 16 |
4.38×106 | 32.56 | 11 |
5.22×106 | 30.24 | 2.8 |
5.63×106 | 29.55 | 0.4 |
6.21×106 | 29.41 | — |
管道编号 | 泄漏位置距离管道 入口距离/cm | 腐蚀速率/(mm/a) | ||
---|---|---|---|---|
数值模拟 | 实际情况 | 数值模拟 | 实际情况 | |
第一排第5号 | 3 | 5 | 3.85 | 3.75 |
第一排第15号 | 2 | 4 | 3.88 | |
第一排第25号 | 5 | 8 | 3.78 | |
第一排第35号 | 6 | 7 | 3.73 |
表2 数值模拟结果与实际情况对比
Table 2 Comparison of numerical simulation results with the actual situation
管道编号 | 泄漏位置距离管道 入口距离/cm | 腐蚀速率/(mm/a) | ||
---|---|---|---|---|
数值模拟 | 实际情况 | 数值模拟 | 实际情况 | |
第一排第5号 | 3 | 5 | 3.85 | 3.75 |
第一排第15号 | 2 | 4 | 3.88 | |
第一排第25号 | 5 | 8 | 3.78 | |
第一排第35号 | 6 | 7 | 3.73 |
1 | Jin H Z, Yu C Y, Gu Y J, et al. Experimental and numerical investigation on erosion corrosion of the air cooler tube bundle in a residue hydrotreating unit[J]. China Petroleum Processing & Petrochemical Technology, 2022, 24(4): 151-162. |
2 | Sun L, Zhu M, Ou G F, et al. Corrosion investigation of the inlet section of REAC pipes in the refinery[J]. Engineering Failure Analysis, 2016, 66: 468-478. |
3 | Ou G F, Zheng Z J, Jin H Z, et al. Investigation on the flow induced erosion-corrosion failure of hydrocracking air cooler systems and optimization study[C]//ASME 2009 Pressure Vessels and Piping Conference. Prague, Czech Republic, 2010: 717-724. |
4 | Shokri A. An investigation of corrosion and sedimentation in the air cooler tubes of benzene drying column in linear alkyl benzene production plant[J]. Chemical Papers, 2019, 73(9): 2265-2274. |
5 | Ravindranath K, Alazemi R. Failure of stainless steel 304L air cooler tubes due to stress corrosion cracking caused by organic chlorides[J]. Engineering Failure Analysis, 2019, 102: 79-86. |
6 | Zheng Z J, Ou G F, Ye H J, et al. Investigation on the deposition failure of a reactor effluent air cooler in hydrocracking unit[J]. Engineering Failure Analysis, 2016, 68: 52-63. |
7 | 姜爱国, 张建文, 辛亚男, 等. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200. |
Jiang A G, Zhang J W, Xin Y N, et al. Numerical simulation of multiphase erosion-corrosion of tubes bundles of hydrocracking air cooler[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(2): 192-200. | |
8 | Shahali H, Ghasemi H M, Abedini M. Contributions of corrosion and erosion in the erosion-corrosion of Sanicro28[J]. Materials Chemistry and Physics, 2019, 233: 366-377. |
9 | Islam M A, Farhat Z N. The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium[J]. Tribology International, 2013, 68: 26-34. |
10 | 谭卓伟, 杨留洋, 王振波, 等. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究[J]. 化工学报, 2021, 72(4): 2203-2212. |
Tan Z W, Yang L Y, Wang Z B, et al. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field[J]. CIESC Journal, 2021, 72(4): 2203-2212. | |
11 | Dalbert V, Mary N, Normand B, et al. In situ determinations of the wear surfaces, volumes and kinetics of repassivation: contribution in the understanding of the tribocorrosion behaviour of a ferritic stainless steel in various pH[J]. Tribology International, 2020, 150:106374. |
12 | Sekar A, Bennet A R. A comprehensive review on synergistic and individual effects of erosion-corrosion in ferrous piping materials[J]. Corrosion Reviews, 2023, 41(4): 399-416. |
13 | Li Y, Zhang J W, Su G Q, et al. Investigation on multiphase erosion-corrosion of elbow in LPG desulfurization unit[J]. Metals, 2023, 13(2): 256. |
14 | Liu X, Duan A, Quan J, et al. A study on the corrosion failure induced by the ammonium chloride deposition in a high-pressure air cooler system[J]. Engineering Failure Analysis, 2020, 112: 104529. |
15 | Jin H Z, Chen X P, Ou G F, et al. Potential failure analysis and prediction of multiphase flow corrosion thinning behavior in the reaction effluent air cooler system[J]. Engineering Failure Analysis, 2020, 109: 104274. |
16 | Valeh-e-sheyda P, Rashidi H. Inhibition of corrosion in amine air cooled heat exchanger: experimental and numerical study[J]. Applied Thermal Engineering, 2016, 98: 1241-1250. |
17 | Lee H, Kharangate C R, Mascarenhas N, et al. Experimental and computational investigation of vertical downflow condensation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 865-79. |
18 | Lee W H. A pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980, 1: 407-431. |
19 | Marek R, Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 39-53. |
20 | Da Riva E, Del Col D. Effect of gravity during condensation of R134a in a circular minichannel[J]. Microgravity Science and Technology, 2011, 23(1): 87-97. |
21 | Zeng M Q, Zou L G, Peng Z R, et al. Numerical study of condensation heat transfer characteristics of R134a/R290 and R134a/R1270 refrigerant blends as alternatives to replace R404A[J]. Applied Thermal Engineering, 2024, 243: 122644. |
22 | Huser A, Kvernvold O, Prediction of sand erosion in processand pipe components[C]//BHR Group Conference Series Publication, Mechanical Engineering Publications Limited. United Kingdom, 1998: 217-227. |
23 | Liu Y C, Zhong X K, Wang Z T, et al. Permeating hydrogen generated from the elemental sulfur corrosion of low carbon steel[J]. Corrosion Science, 2023, 213: 110987. |
24 | Lozinskii A V, Kuchin D P, Efimov V N, et al. Solving the problems of high-temperature sulfur corrosion in primary oil refineries[J]. Chemistry and Technology of Fuels and Oils, 2021, 57(4): 613-618. |
25 | Stack M M, Corlett N, Turgoose S. Some recent advances in the development of theoretical approaches for the construction of erosion-corrosion maps in aqueous conditions[J]. Wear, 1999, 233: 535-541. |
26 | Zheng Z B, Zheng Y G, Sun W H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J]. Corrosion Science, 2013, 76: 337-347. |
27 | Liu Y F, Zhao Y L, Yao J. Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement[J]. Wear, 2021, 466: 203572. |
28 | Li Y, Su G Q, Zhang J W, et al. Failure analysis of the collection pipeline at the outlet of air cooler in the distillation column[J]. Engineering Failure Analysis, 2023, 152: 107509. |
29 | 苏国庆, 张建文, 李彦. 蝶阀后管线腐蚀发生与发展机制研究[J]. 化工学报, 2022, 73(12): 5504-5516. |
Su G Q, Zhang J W, Li Y. Study on the occurrence and development mechanism of pipeline corrosion behind butterfly valve[J]. CIESC Journal, 2022, 73(12): 5504-5516. | |
30 | Stack M M, Abdelrahman S M, Jana B D. A new methodology for modelling erosion-corrosion regimes on real surfaces: gliding down the galvanic series for a range of metal-corrosion systems[J]. Wear, 2010, 268(3/4): 533-542. |
[1] | 黄娜, 蒋云龙, 王东涵, 吴明婷, 蒋雪莉, 钟豫. 通道振动频率对超临界正癸烷裂解流动换热影响的数值研究[J]. 化工学报, 2025, 76(1): 173-183. |
[2] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[3] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[4] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[5] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[6] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[7] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
[8] | 王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209. |
[9] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[10] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[11] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[12] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[13] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[14] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[15] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 84
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||