化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 195-205.DOI: 10.11949/0438-1157.20240205
董新宇(), 边龙飞, 杨怡怡, 张宇轩, 刘璐(
), 王腾
收稿日期:
2024-02-07
修回日期:
2024-03-25
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
刘璐
作者简介:
董新宇(1990—),男,博士,讲师,xydong@ncepu.edu.cn
基金资助:
Xinyu DONG(), Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU(
), Teng WANG
Received:
2024-02-07
Revised:
2024-03-25
Online:
2024-12-25
Published:
2024-12-17
Contact:
Lu LIU
摘要:
超临界CO2在塔式太阳能热发电和核能工业领域中展现出了巨大潜力,为了研究超临界CO2在冷却条件下倾斜上升管内的换热特性,采用数值模拟方法,将其分为类液区、跨临界区、类气区分别进行模拟,分析了倾斜上升管中超临界CO2的密度场与温度场分布及其对流传热系数和平均阻力系数沿管长的变化规律,并研究了不同倾斜角度、不同质量通量以及不同压力对超临界CO2换热性能的影响。研究结果表明:倾斜角度变化对于类液区超临界CO2的对流传热系数和平均阻力系数有所影响,对类气区则没有影响;质量通量的增大能够提高对流传热系数,减小平均阻力系数;压力的改变对拟临界区及类气区的对流传热特性影响较大。
中图分类号:
董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205.
Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions[J]. CIESC Journal, 2024, 75(S1): 195-205.
1 | 王倩. 我国能源消费现状及其优化策略[J]. 商业经济研究, 2018(17): 40-42. |
Wang Q. Current situation and optimization strategy of energy consumption in China[J]. Journal of Commercial Economics, 2018(17): 40-42. | |
2 | 王开正, 徐肖肖, 刘朝, 等. 超临界CO2在螺旋管中换热特性的数值模拟[J]. 太阳能学报, 2017, 38(4): 1102-1108. |
Wang K Z, Xu X X, Liu C, et al. Numerical simulation of heat transfer characteristics of supercritical CO2 in helically coiled tube[J]. Acta Energiae Solaris Sinica, 2017, 38(4): 1102-1108. | |
3 | 王淑香, 张伟, 牛志愿, 等. 超临界压力下CO2在螺旋管内的混合对流换热[J]. 化工学报, 2013, 64(11): 3917-3926. |
Wang S X, Zhang W, Niu Z Y, et al. Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube[J]. CIESC Journal, 2013, 64(11): 3917-3926. | |
4 | 徐肖肖, 吴杨杨, 刘朝, 等. 水平螺旋管内超临界CO2冷却换热的数值模拟[J]. 物理学报, 2015, 64(5): 258-264. |
Xu X X, Wu Y Y, Liu C, et al. Numerical study of cooling heat transfer of supercritical carbon dioxide in a horizontal helically coiled tube[J]. Acta Physica Sinica, 2015, 64(5): 258-264. | |
5 | Le Moullec Y. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J]. Energy, 2013, 49: 32-46. |
6 | Sarkar J, Bhattacharyya S. Optimization of recompression S-CO2 power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945. |
7 | Xu J L, Sun E H, Li M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157: 227-246. |
8 | 黄俊杰, 韩增孝, 郭江峰, 等. 超临界CO2微通道换热器研究进展[J]. 制冷学报, 2023, 44(4): 1-14. |
Huang J J, Han Z X, Guo J F, et al. Research progress in supercritical CO2 microchannel heat exchangers[J]. Journal of Refrigeration, 2023, 44(4): 1-14. | |
9 | Bourke P J, Pulling D J, Gill L E, et al. Forced convective heat transfer to turbulent CO2 in the supercritical region[J]. International Journal of Heat and Mass Transfer, 1970, 13(8): 1339-1348. |
10 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
11 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290. | |
12 | Fan Y H, Tang G H. Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating[J]. Applied Thermal Engineering, 2018, 138: 354-364. |
13 | Liu S H, Huang Y P, Wang J F, et al. Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 117: 595-606. |
14 | Liao S, Zhao T. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124: 413-420. |
15 | Yoon S H, Kim J H, Hwang Y W, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration, 2003, 26(8): 857-864. |
16 | 崔海亭, 刘思文, 王少政. 超临界CO2水平直管内冷却换热的数值模拟[J]. 河北科技大学学报, 2019, 40(3): 252-258. |
Cui H T, Liu S W, Wang S Z. Numerical simulation of convection heat transfer of supercritical carbon dioxide in horizontal straight tube[J]. Journal of Hebei University of Science and Technology, 2019, 40(3): 252-258. | |
17 | Oh H K, Son C H. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1230-1241. |
18 | Ding T, Li Z. Research on convection heat transfer character of super critical carbon dioxide flows inside horizontal tube[J]. International Journal of Heat and Mass Transfer, 2016, 92: 665-674. |
19 | 相梦如, 郭江峰, 淮秀兰, 等. 超临界压力CO2水平管内冷却换热机理研究[J]. 工程热物理学报, 2017, 38(9): 1929-1934. |
Xiang M R, Guo J F, Huai X L, et al. A study on the cooling heat transfer mechanism for supercritical pressure CO2 in horizontal tube[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1929-1934. | |
20 | 周金枭, 张世杰, 李逍霄, 等. 水平管内超临界二氧化碳非均匀冷却对流传热特性研究[J]. 工程热物理学报, 2023, 44(4):1064-1073. |
Zhou J X, Zhang S J, Li X X, et al. The study of heat transfer performance of unevenly cooled supercritical CO2 in the horizontal tube[J]. Journal of Engineering Thermophysics, 2023, 44(4): 1064-1073. | |
21 | 朱兵国, 何吉祥, 徐进良, 等. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
Zhu B G, He J X, Xu J L, et al. Heat transfer characteristics of supercritical pressure carbon dioxide in gradually expanded/contracted tubes under cooling conditions[J]. CIESC Journal, 2023, 74(3): 1062-1072. | |
22 | Liu Z B, He Y L, Yang Y F, et al. Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube[J]. Applied Thermal Engineering, 2014, 70(1): 307-315. |
23 | 汪森林, 李照志, 邵应娟, 等. 超临界二氧化碳垂直管内传热恶化数值模拟研究[J]. 化工学报, 2022, 73(3): 1072-1082. |
Wang S L, Li Z Z, Shao Y J, et al. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube[J]. CIESC Journal, 2022, 73(3): 1072-1082. | |
24 | 朱兵国. 超临界二氧化碳垂直管内对流换热研究[D]. 北京: 华北电力大学, 2020. |
Zhu B G. Research on convective heat transfer of super-critical carbon dioxide in vertical tube[D]. Beijing: North China Electric Power University, 2020. | |
25 | 朱兵国, 张海松, 孙恩慧, 等. 超高参数CO2在垂直管中的传热分析[J]. 化工进展, 2019, 38(11): 4880-4889. |
Zhu B G, Zhang H S, Sun E H, et al. Heat transfer analysis of ultra high parameter CO2 in vertical pipe[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4880-4889. | |
26 | 李志辉, 姜培学. 超临界压力CO2在垂直管内对流换热准则关联式[J]. 核动力工程, 2010, 31(5): 72-75. |
Li Z H, Jiang P X. Correlations of CO2 at supercritical pressures in a vertical circular tube[J]. Nuclear Power Engineering, 2010, 31(5): 72-75. | |
27 | 李志辉, 姜培学. 超临界压力CO2在垂直管内对流换热数值模拟[J]. 原子能科学技术, 2009, 43(3): 247-251. |
Li Z H, Jiang P X. Numerical simulation of convection heat transfer for CO2 at supercritical pressure in vertical circular tube[J]. Atomic Energy Science and Technology, 2009, 43(3): 247-251. | |
28 | Lei X L, Li H X, Zhang W Q, et al. Experimental study on the difference of heat transfer characteristics between vertical and horizontal flows of supercritical pressure water[J]. Applied Thermal Engineering, 2017, 113: 609-620. |
29 | Zhang Q, Li H X, Liu J L, et al. Numerical investigation of different heat transfer behaviors of supercritical CO2 in a large vertical tube[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118944. |
30 | Bruch A, Bontemps A, Colasson S. Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2589-2598. |
31 | 闫晨帅, 朱兵国, 张海松, 等. 超临界压力CO2在倾斜光管内换热特性数值分析[J]. 中国电机工程学报, 2020, 40(2): 583-592. |
Yan C S, Zhu B G, Zhang H S, et al. Numerical analysis on heat transfer characteristics of supercritical pressure CO2 in inclined smooth tube[J]. Proceedings of the CSEE, 2020, 40(2): 583-592. |
[1] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[2] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[3] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[4] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[5] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[6] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[7] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[8] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[9] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[10] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[11] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[12] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[13] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[14] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[15] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||