| [1] |
侯旺君, 闫翎鹏, 曹哲勇, 等. 煤基零维纳米碳材料的合成、性能及其在能源转换和存储应用中的研究进展[J]. 化工学报, 2022, 73(11): 4791-4813.
|
|
Hou W J, Yan L P, Cao Z Y, et al. Research progress of synthesis and properties of coal-based zero-dimensional nanocarbon materials and their applications in energy conversion and storage[J]. CIESC Journal, 2022, 73(11): 4791-4813.
|
| [2] |
赵之端, 赵蒙, 刘道银, 等. 振动和搅拌对SiO2纳米颗粒聚团流化的影响对比研究[J]. 工程热物理学报, 2021, 42(1): 136-142.
|
|
Zhao Z D, Zhao M, Liu D Y, et al. Comparative study on the effect of vibration and stirring on the fluidization of SiO2 nanoparticle agglomerates[J]. Journal of Engineering Thermophysics, 2021, 42(1): 136-142.
|
| [3] |
郭婷, 何川, 李海念, 等. 声场对导向管喷流床环隙区流化质量的影响[J]. 化学反应工程与工艺, 2019, 35(6): 501-508.
|
|
Guo T, He C, Li H N, et al. Effect of an acoustic field on fluidization quality in the annulus of a spout-fluidized bed with a draft tube[J]. Chemical Reaction Engineering and Technology, 2019, 35(6): 501-508.
|
| [4] |
王荘, 吕潇, 邵媛媛, 等. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927.
|
|
Wang Z, Lyu X, Shao Y Y, et al. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927.
|
| [5] |
曾玺, 王芳, 余剑, 等. 微型流化床反应分析的方法基础与应用研究[J]. 化工进展, 2016, 35(6): 1687-1697.
|
|
Zeng X, Wang F, Yu J, et al. Fundamentals and applications of micro fluidized bed reaction analysis[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1687-1697.
|
| [6] |
许可, 韩梦琪, 张海萍, 等. C类颗粒添加纳米细粉后的流态化行为研究[J]. 高校化学工程学报, 2019, 33(6): 1361-1368.
|
|
Xu K, Han M Q, Zhang H P, et al. Study on flow behaviors of group C particles blended with nano additives[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1361-1368.
|
| [7] |
Karimi F, Haghshenasfard M, Sotudeh-Gharebagh R, et al. Multiscale characterization of nanoparticles in a magnetically assisted fluidized bed[J]. Particuology, 2020, 51: 64-71.
|
| [8] |
Karimi F, Haghshenasfard M, Sotudeh-Gharebagh R, et al. Enhancing the fluidization quality of nanoparticles using external fields[J]. Advanced Powder Technology, 2018, 29(12): 3145-3154.
|
| [9] |
Ajbar A, Alhumazi K, Asif M. Improvement of the fluidizability of cohesive powders through mixing with small proportions of group A particles[J]. The Canadian Journal of Chemical Engineering, 2005, 83(6): 930-943.
|
| [10] |
Zhou Y, Zhu J. A review on fluidization of Geldart group C powders through nanoparticle modulation[J]. Powder Technology, 2021, 381: 698-720.
|
| [11] |
Duan H, Liang X Z, Zhou T, et al. Fluidization of mixed SiO2 and ZnO nanoparticles by adding coarse particles[J]. Powder Technology, 2014, 267: 315-321.
|
| [12] |
于明州, 林建忠. 纳米颗粒多相流体动力学研究及应用[J]. 力学与实践, 2010, 32(3): 1-9.
|
|
Yu M Z, Lin J Z. The dynamics of nanoparitcle-laden multiphase flow and its applications[J]. Mechanics in Engineering, 2010, 32(3): 1-9.
|
| [13] |
刘演华, 林建忠. 两相流中颗粒参数分布的矩方法研究[J]. 空气动力学学报, 2009, 27(6): 656-663.
|
|
Liu Y H, Lin J Z. Research on method of momens of particulate parameter distribution in multiphase flow[J]. Acta Aerodynamica Sinica, 2009, 27(6): 656-663.
|
| [14] |
Icardi M, Ronco G, Marchisio D L, et al. Efficient simulation of gas-liquid pipe flows using a generalized population balance equation coupled with the algebraic slip model[J]. Applied Mathematical Modelling, 2014, 38(17/18): 4277-4290.
|
| [15] |
Duan X X, Feng X, Yang C, et al. CFD modeling of turbulent reacting flow in a semi-batch stirred-tank reactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 675-683.
|
| [16] |
魏利平, 江国栋, 滕海鹏. 双组分黏性颗粒相间曳力模型[J]. 工程热物理学报, 2019, 40(1): 114-117.
|
|
Wei L P, Jiang G D, Teng H P. Cohesive particle-particle drag model[J]. Journal of Engineering Thermophysics, 2019, 40(1): 114-117.
|
| [17] |
Ding J M, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538.
|
| [18] |
王垚, 金涌, 魏飞, 等. 纳米级SiO2聚团散式流化中聚团参数及曳力系数[J]. 清华大学学报(自然科学版), 2001, 41(S1): 32-35.
|
|
Wang Y, Jin Y, Wei F, et al. Agglomeration parameters and drag coefficients in agglomerate particulate fluidization of SiO2 nanoparticles[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(S1): 32-35.
|
| [19] |
李清, 夏珉, 何慧灵, 等. 水平管内气液两相流中气泡滑移速度的数值模拟[J]. 石油化工, 2011, 40(10): 1078-1082.
|
|
Li Q, Xia M, He H L, et al. Numerical simulation of bubble slip velocity in gas-liquid two-phase flow within horizontal pipe[J]. Petrochemical Technology, 2011, 40(10): 1078-1082.
|
| [20] |
Fan R, Marchisio D L, Fox R O. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds[J]. Powder Technology, 2004, 139(1): 7-20.
|
| [21] |
Mazzei L, Marchisio D L, Lettieri P. Direct quadrature method of moments for the mixing of inert polydisperse fluidized powders and the role of numerical diffusion[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5141-5152.
|
| [22] |
Kong B, Fox R O. A moment-based kinetic theory model for polydisperse gas-particle flows[J]. Powder Technology, 2020, 365: 92-105.
|
| [23] |
Marchisio D L, Vigil R D, Fox R O. Quadrature method of moments for aggregation-breakage processes[J]. Journal of Colloid and Interface Science, 2003, 258(2): 322-334.
|
| [24] |
Ramachandran R, Immanuel C D, Stepanek F, et al. A mechanistic model for breakage in population balances of granulation: theoretical kernel development and experimental validation[J]. Chemical Engineering Research and Design, 2009, 87(4): 598-614.
|
| [25] |
Vigil R D. On equilibrium solutions of aggregation-fragmentation problems[J]. Journal of Colloid and Interface Science, 2009, 336(2): 642-647.
|
| [26] |
Jiang Y Y, Xu Z H, Zhang M Z, et al. Interactions between gas flow and reversible chemical reaction in porous media[J]. Journal of Central South University, 2017, 24(5): 1144-1154.
|
| [27] |
Ma H Y, Yu M Z, Jin H H. A study of the evolution of nanoparticle dynamics in a homogeneous isotropic turbulence flow via a DNS-TEMOM method[J]. Journal of Hydrodynamics, 2020, 32(6): 1091-1099.
|
| [28] |
郑建祥, 许帅, 王京阳. 超细颗粒聚团模型及湍流聚并器聚团研究[J]. 中国电机工程学报, 2016, 36(16): 4389-4395, 4524.
|
|
Zheng J X, Xu S, Wang J Y. Simulation study of ultrafine particle aggregation models and agglomerator coagulation[J]. Proceedings of the CSEE, 2016, 36(16): 4389-4395, 4524.
|
| [29] |
Marchisio D L, Soos M, Sefcik J, et al. Role of turbulent shear rate distribution in aggregation and breakage processes[J]. AIChE Journal, 2006, 52(1): 158-173.
|
| [30] |
Shrestha S, Wang B, Dutta P. Nanoparticle processing: understanding and controlling aggregation[J]. Advances in Colloid and Interface Science, 2020, 279: 102162.
|
| [31] |
Hosseinibalam F, Hassanzadeh S, Mirmohammadi M. Simulation of tidal energy extraction by using FLUENT model[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43: 2035-2042.
|