化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1334-1345.DOI: 10.11949/0438-1157.20240811
蔡本安1(
), 张建新1, 龙城君1,2, 杜乔琛1,3, 车勋建1(
), 张义迎4, 蔡伟华1
收稿日期:2024-07-17
修回日期:2024-08-21
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
车勋建
作者简介:蔡本安(1990—),男,博士,副教授,cbenan@neepu.edu.cn
基金资助:
Ben’an CAI1(
), Jianxin ZHANG1, Chengjun LONG1,2, Qiaochen DU1,3, Xunjian CHE1(
), Yiying ZHANG4, Weihua CAI1
Received:2024-07-17
Revised:2024-08-21
Online:2025-03-25
Published:2025-03-28
Contact:
Xunjian CHE
摘要:
设计并搭建了一套通过喷雾闪蒸方法制备微纳米颗粒的实验装置,将含有有机溶质的溶液喷入真空腔室内进行闪蒸,以得到相应的微纳米有机颗粒。实验涵盖了3.0~4.5 MPa的初始压力、130~200℃的初始温度以及三组不同直径的喷嘴和四种有机物溶质。使用0.10 mm的喷嘴,制得的对甲苯磺酰胺颗粒尺寸分布在0~30 μm。提高喷雾初始温度与压力可使小尺寸颗粒占比提高,平均直径减小,这对颗粒的细化作用十分明显。当增大喷嘴直径时,雾化效果变差对闪蒸的抑制将会增大颗粒的尺寸和不均匀性,因此使用小口径喷嘴能够获得更小、分布更集中的颗粒。而不同有机溶质制得的颗粒形态与大小均有不同,但颗粒尺寸都分布在40 μm以内,表明本实验装置具有一定的普适性。
中图分类号:
蔡本安, 张建新, 龙城君, 杜乔琛, 车勋建, 张义迎, 蔡伟华. 喷雾闪蒸制备微纳米颗粒[J]. 化工学报, 2025, 76(3): 1334-1345.
Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles[J]. CIESC Journal, 2025, 76(3): 1334-1345.
| 药品名称 | 化学式 | 纯度 | 厂家 |
|---|---|---|---|
| 乙醇 | C2H6O | >99% | 三合酒精 |
| 对甲苯磺酰胺 | C7H9NO2S | GR,>99% | 麦克林 |
| 丁二酸 | C4H6O4 | AR,>99% | 科密欧 |
| 苹果酸 | C2H6O5 | AR,>99% | 福晨 |
| 葡萄糖 | C6H12O6 | GR,>99% | 科密欧 |
表1 实验试剂
Table 1 Experimental reagents
| 药品名称 | 化学式 | 纯度 | 厂家 |
|---|---|---|---|
| 乙醇 | C2H6O | >99% | 三合酒精 |
| 对甲苯磺酰胺 | C7H9NO2S | GR,>99% | 麦克林 |
| 丁二酸 | C4H6O4 | AR,>99% | 科密欧 |
| 苹果酸 | C2H6O5 | AR,>99% | 福晨 |
| 葡萄糖 | C6H12O6 | GR,>99% | 科密欧 |
| 参数 | 选取范围 |
|---|---|
| 初始温度/℃ | 130~200 |
| 初始压力/MPa | 3.0~4.5 |
| 喷嘴尺寸/mm | 0.10、0.15、0.20 |
| 闪蒸罐真空压力/Pa | 2000~3000 |
| 喷射方向 | 竖直向下 |
表2 实验参数选取
Table 2 Selection of experimental parameters
| 参数 | 选取范围 |
|---|---|
| 初始温度/℃ | 130~200 |
| 初始压力/MPa | 3.0~4.5 |
| 喷嘴尺寸/mm | 0.10、0.15、0.20 |
| 闪蒸罐真空压力/Pa | 2000~3000 |
| 喷射方向 | 竖直向下 |
| 实验仪器 | 精确性 | 测试范围 | 不确定度 |
|---|---|---|---|
| 压力变送器 | ±0.5% | 0~5000 Pa | ±1.52% |
| 压力变送器 | ±0.5% | 0~8 MPa | ±1.36% |
| 流量计 | ±0.5% | 1~18 L/h | ±1.3% |
| 热电偶 | ±1% | 0~600℃ | ±1% |
表3 实验仪器的不确定度
Table 3 Uncertainty of experimental instruments
| 实验仪器 | 精确性 | 测试范围 | 不确定度 |
|---|---|---|---|
| 压力变送器 | ±0.5% | 0~5000 Pa | ±1.52% |
| 压力变送器 | ±0.5% | 0~8 MPa | ±1.36% |
| 流量计 | ±0.5% | 1~18 L/h | ±1.3% |
| 热电偶 | ±1% | 0~600℃ | ±1% |
| 1 | 陈成克, 姜从强, 蒋梅燕, 等. 石墨基底上制备TaC纳米颗粒的研究[J]. 浙江工业大学学报, 2022, 50(6): 671-678. |
| Chen C K, Jiang C Q, Jiang M Y, et al. Study on the preparation of TaC nanoparticles on graphite substrate[J]. Journal of Zhejiang University of Technology, 2022, 50(6): 671-678. | |
| 2 | 房迅, 王嘉伟, 吴迎花, 等. 银纳米颗粒的制备、抑菌机制及应用的研究进展[J]. 化工技术与开发, 2023, 52(8): 33-37. |
| Fang X, Wang J W, Wu Y H, et al. Progress of preparation, bacteriostatic mechanism and application of silver nanoparticles[J]. Technology & Development of Chemical Industry, 2023, 52(8): 33-37. | |
| 3 | 张明珠, 于涛. 羟基喜树碱纳米微米制剂研究进展[J]. 现代农业科技, 2016(1): 227-228, 230. |
| Zhang M Z, Yu T. Research advances on hydroxycamptothecin nano and micro formulations[J]. Modern Agricultural Science and Technology, 2016(1): 227-228, 230. | |
| 4 | 刘春华, 杨秀培, 吴莉宇, 等. 纳米银胶体粒子的制备及对牛血清蛋白的检测[J]. 化学研究与应用, 2008, 20(6): 786-789. |
| Liu C H, Yang X P, Wu L Y, et al. Preparation of nano-silver colloid and its application on quantitative analysis of BSA[J]. Chemical Research and Application, 2008, 20(6): 786-789. | |
| 5 | Yao R S, Liu L, Deng S S, et al. Preparation of carboxymethylchitosan nanoparticles with acid-sensitive bond based on solid dispersion of 10-hydroxycamptothecin[J]. ISRN Pharmaceutics, 2011, 2011: 624704. |
| 6 | 梁冉, 冯玉玲, 孙京国.布南色林微米化药物的制备[C]// 中国化学会全国第十一届有机合成化学学术研讨会. 2014. |
| Liang R, Feng Y L, Sun J G. Preparation of micronized drug of blonanserin[C]// The 11th National Synthetic Organic Chemistry Symposium. 2014. | |
| 7 | 张海丰, 张鹏宇, 赵贵龙, 等. 纳米二氧化钛的制备及其应用研究进展[J]. 东北电力大学学报, 2014, 34(2): 52-56. |
| Zhang H F, Zhang P Y, Zhao G L, et al. Advances on preparation, modification and application of nanosized titanium dioxide[J]. Journal of Northeast Dianli University, 2014, 34(2): 52-56. | |
| 8 | 季璨, 王乃华, 崔峥, 等. 过热液滴闪蒸过程数学模型的建立与应用[J]. 工程热物理学报, 2017, 38(4): 869-875. |
| Ji C, Wang N H, Cui Z, et al. The development and application of a mathematical model for superheated droplet flash evaporation[J]. Journal of Engineering Thermophysics, 2017, 38(4): 869-875. | |
| 9 | Chen Q, Thu K, Bui T D, et al. Development of a model for spray evaporation based on droplet analysis[J]. Desalination, 2016, 399: 69-77. |
| 10 | 程文龙, 胡磊, 陈华, 等. 真空闪蒸喷雾冷却中非等温液滴闪蒸特性的研究[J]. 真空科学与技术学报, 2015, 35(4): 399-404. |
| Cheng W L, Hu L, Chen H, et al. Influence of characteristics of non-isothermal flashing droplet on vacuum flash-spray cooling[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(4): 399-404. | |
| 11 | Chen Q, Li Y, Chua K J. On the thermodynamic analysis of a novel low-grade heat driven desalination system[J]. Energy Conversion and Management, 2016, 128: 145-159. |
| 12 | Liu X D, Yu L, Zhao L, et al. A comprehensive simulation analysis to optimize the performance of spray evaporator on treating concentrated brine[J]. Desalination, 2023, 548: 116292. |
| 13 | Gao H, Wang Q H, Ke X, et al. Preparation and characterization of an ultrafine HMX/NQ co-crystal by vacuum freeze drying method[J]. RSC Advances, 2017, 7(73): 46229-46235. |
| 14 | He B B, Tian S H, Ju S H, et al. Preparation of polyphosphoric acid and recovery of valuable fluorine resources through a microwave intensification flash evaporation process[J]. Chemical Engineering and Processing-Process Intensification, 2023, 189: 109397. |
| 15 | Risse B, Spitzer D, Hassler D, et al. Continuous formation of submicron energetic particles by the flash-evaporation technique[J]. Chemical Engineering Journal, 2012, 203: 158-165. |
| 16 | Pichot V, Seve A, Berthe J E, et al. Study of the elaboration of HMX and HMX composites by the spray flash evaporation process[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(12): 1418-1423. |
| 17 | Ghosh M, Sikder A K, Banerjee S, et al. Preparation of reduced sensitivity co-crystals of cyclic nitramines using spray flash evaporation[J]. Defence Technology, 2020, 16(1): 188-200. |
| 18 | Ikegami Y, Sasaki H, Gouda T, et al. Experimental study on a spray flash desalination (influence of the direction of injection)[J]. Desalination, 2006, 194(1/2/3): 81-89. |
| 19 | 刘兵, 宇文璋杰, 杨涛, 等. 异戊烷闪蒸喷雾喷嘴近场雾化与喷嘴内流动特性[J]. 东北电力大学学报, 2022, 42(3): 57-63. |
| Liu B, Yuwen Z J, Yang T, et al. Atomization near nozzle filed and internal flow within the nozzle of iso-pentane flashing spray[J]. Journal of Northeast Electric Power University, 2022, 42(3): 57-63. | |
| 20 | 季璨, 王乃华, 崔峥, 等. 高温高压喷雾闪蒸的蒸发特性[J]. 化工学报, 2016, 67(5): 1771-1777. |
| Ji C, Wang N H, Cui Z, et al. Evaporation characteristics of spray flash evaporation at high temperature and high pressure[J]. CIESC Journal, 2016, 67(5): 1771-1777. | |
| 21 | 周士鹤, 刘新宇, 冯寅, 等. 基于液滴分析的喷雾闪蒸海水淡化模拟研究[J]. 大连理工大学学报, 2021, 61(6): 593-600. |
| Zhou S H, Liu X Y, Feng Y, et al. Simulation study of spray flash evaporation seawater desalination based on droplet analysis[J]. Journal of Dalian University of Technology, 2021, 61(6): 593-600. | |
| 22 | Cai B A, Zhang Q, Jiang Y, et al. Experimental study on spray flash evaporation under high temperature and pressure[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1106-1115. |
| 23 | Loureiro D D, Kronenburg A, Reutzsch J, et al. Droplet size distributions in cryogenic flash atomization[J]. International Journal of Multiphase Flow, 2021, 142: 103705. |
| 24 | Mutair S, Ikegami Y. Experimental study on flash evaporation from superheated water jets: influencing factors and formulation of correlation[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5643-5651. |
| 25 | Mutair S, Ikegami Y. On the evaporation of superheated water drops formed by flashing of liquid jets[J]. International Journal of Thermal Sciences, 2012, 57: 37-44. |
| 26 | Wang Y, He Q, Yang Q Z, et al. Energy and exergy analyses of circulatory flash evaporation of aqueous NaCl solution[J]. Desalination, 2018, 436: 81-90. |
| 27 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| 28 | Zeng Y B, Lee C F F. An atomization model for flash boiling sprays[J]. Combustion Science and Technology, 2001, 169(1): 45-67. |
| 29 | Oza R D, Sinnamon J F. An experimental and analytical study of flash-boiling fuel injection[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 1983: 948-962. |
| 30 | Sher E, Bar-Kohany T, Rashkovan A. Flash-boiling atomization[J]. Progress in Energy and Combustion Science, 2008, 34(4): 417-439. |
| 31 | Bar-Kohany T, Levy M. State of the art review of flash-boiling atomization[J]. Atomization and Sprays, 2016, 26(12): 1259-1305. |
| [1] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
| [2] | 胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055. |
| [3] | 代艳辉, 熊启钊, 房强, 杨东晓, 王毅, 陈杨, 李晋平, 李立博. 原位蒸汽辅助法用于一步制备多级孔Cu-BTC[J]. 化工学报, 2024, 75(9): 3329-3337. |
| [4] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
| [5] | 常蕊, 邢蕊蕊, 闫学海. 基于非共价化学的绿色生物可循环肽材料[J]. 化工学报, 2024, 75(4): 1317-1332. |
| [6] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
| [7] | 刘恺轩, 姜沁源, 汪菲, 李润, 朱平, 王康康, 臧永路, 赵彦龙, 张如范. 高密度超长碳纳米管的可控制备:进展与展望[J]. 化工学报, 2024, 75(4): 1355-1369. |
| [8] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
| [9] | 李川, 洪振取, 单宝明, 徐啟蕾, 张方坤. 求解多维粒数衡算方程的高阶紧致差分方法[J]. 化工学报, 2024, 75(12): 4513-4522. |
| [10] | 连斌, 龙妍, 徐啟蕾, 单宝明, 王学重, 张方坤. 间歇冷却结晶过程模型参数及操作敏感性分析[J]. 化工学报, 2024, 75(12): 4587-4595. |
| [11] | 陈展珠, 叶锦华, 王智彬, 杨智, 贾莉斯, 陈颖. 三维分形集成共轴流通道实现液滴高效生成[J]. 化工学报, 2024, 75(12): 4442-4452. |
| [12] | 李宇明, 徐砚文, 刘红宇, 马丽娜, 王雅君. 镍基磷化物的合成及其在电解水制氢中的应用[J]. 化工学报, 2024, 75(12): 4385-4402. |
| [13] | 巨晓洁, 何明炜, 夏有强, 汪伟, 褚良银. 微流控技术可控制备异形微纤维的研究进展[J]. 化工学报, 2024, 75(11): 3923-3934. |
| [14] | 孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390. |
| [15] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号