化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2419-2433.DOI: 10.11949/0438-1157.20241449

• 综述与专论 • 上一篇    下一篇

低温等离子体在生物质气化制氢中的应用研究进展

姬海燕1,2(), 刘家印3, 吴海军1,2, 何璟琳1,2, 靳紫恒2(), 魏钿航1,2, 江霞2   

  1. 1.四川大学建筑与环境学院,四川 成都 610065
    2.四川大学碳中和未来技术学院,四川 成都 610065
    3.枣庄市山亭区住房和城乡建设局,山东 枣庄 277299
  • 收稿日期:2024-12-16 修回日期:2025-03-04 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 靳紫恒
  • 作者简介:姬海燕(1995—),女,博士研究生,2357863545@qq.com
  • 基金资助:
    国家重点研发计划重点专项项目(2023YFC3905500)

Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen

Haiyan JI1,2(), Jiayin LIU3, Haijun WU1,2, Jinglin HE1,2, Ziheng JIN2(), Dianhang WEI1,2, Xia JIANG2   

  1. 1.College of Architecture & Environment, Sichuan University, Chengdu 610065, Sichuan, China
    2.College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, Sichuan, China
    3.Zaozhuang Shanting District Housing and Urban-Rural Development Bureau, Zaozhuang 277299, Shandong, China
  • Received:2024-12-16 Revised:2025-03-04 Online:2025-06-25 Published:2025-07-09
  • Contact: Ziheng JIN

摘要:

氢气是未来能源中最有前途的能源载体之一。生物质气化制氢可实现废弃生物质资源化利用,减少环境污染,被认为是一种具有发展潜力和前景的技术。针对常规生物质气化制氢技术存在的氢气产率低、焦油产量大、反应不稳定等难题,低温等离子体高压放电产生高能电子和活性物质(·OH,·O,·CH等)可强化生物质焦油副产物的高效转化,协同催化剂重整可进一步延缓催化剂快速失活,同时大幅提高氢气产率。从克服传统生物质气化制氢技术瓶颈角度出发,梳理总结了低温等离子体反应器类型与应用、反应条件的优化、催化剂协同作用及反应路径等方面。低温等离子体生物质气化制氢技术的优势在于在较低温度下(<550℃)可实现生物质转化,提升反应物转化率及氢气选择性;在提高气化效率、降低成本等方面需要进一步研究和改进,推动低温等离子体在生物质气化制氢工业中的应用。

关键词: 低温等离子体, 生物质, 焦油, 催化, 氢气

Abstract:

Hydrogen is one of the most promising energy carriers for future energy. Biomass gasification for hydrogen production can realize the resource utilization of waste biomass and reduce environmental pollution, and is considered to be a technology with development potential and prospects. To solve the problems of low hydrogen yield, large tar yield, and unstable reaction in conventional biomass gasification hydrogen production technology, high-energy electrons and active substances (·OH,·O,·CH, etc) generated by low-temperature plasma high-voltage discharge can enhance the efficient conversion of biomass tar by-products. The co-catalyst regeneration can further delay the rapid deactivation of the catalyst, and at the same time greatly improve the hydrogen yield. From the perspective of overcoming the bottleneck of traditional biomass gasification hydrogen production technology, this article summarizes the types and applications of low-temperature plasma reactors, the optimization of reaction conditions, the synergistic effect of catalysts and the reaction pathway. The advantage of low-temperature plasma biomass gasification hydrogen production technology lies in the realization of biomass conversion at lower temperatures (<550℃) to improve the conversion rate and selectivity of reactants and gases; further research and improvement are needed in terms of improving the gasification efficiency and reducing costs to promote the application of low-temperature plasma in biomass gasification hydrogen production industry.

Key words: non-thermal plasma, biomass, tar, catalysis, hydrogen production

中图分类号: