化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2434-2450.DOI: 10.11949/0438-1157.20241438
张豪豪1,2(
), 郭莉1,2, 李馨怡1,2, 陈锦溢1, 华超1, 陆平1(
)
收稿日期:2024-12-12
修回日期:2025-01-22
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
陆平
作者简介:张豪豪(1998—),男,博士研究生,zhanghaohao20@mails.ucas.ac.cn
基金资助:
Haohao ZHANG1,2(
), Li GUO1,2, Xinyi LI1,2, Jinyi CHEN1, Chao HUA1, Ping LU1(
)
Received:2024-12-12
Revised:2025-01-22
Online:2025-06-25
Published:2025-07-09
Contact:
Ping LU
摘要:
隔板精馏塔作为一种高效节能的精馏技术,因其在化工分离过程中的优越性能,得到了广泛关注。综述了隔板塔在优化设计和动态控制方面的研究进展,分析列举了迭代法、元启发式算法和基于机器学习的优化设计算法在隔板塔操作参数优化过程中的应用,介绍了隔板塔控制结构的发展历程,从三点控制结构到四点控制结构、温度推断控制结构以及更加复杂和先进的智能控制策略,逐步改善了隔板塔的动态控制性能,重点介绍了模型预测控制策略在隔板塔控制中的应用。最后,指出隔板塔当前研究存在的问题并对未来发展给出展望,旨在进一步促进隔板塔的工业化进程。
中图分类号:
张豪豪, 郭莉, 李馨怡, 陈锦溢, 华超, 陆平. 隔板精馏塔的优化设计及动态控制研究进展[J]. 化工学报, 2025, 76(6): 2434-2450.
Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column[J]. CIESC Journal, 2025, 76(6): 2434-2450.
| 年份 | 设计/建造公司 | 地点 | 应用装置/体系 | 效果 | 标志 | 文献 |
|---|---|---|---|---|---|---|
| 1999 | Sumitomo | 日本Kyowa Yuka公司 | 乙酸乙酯分离装置 | 侧线乙酸乙酯纯度99.99% 节省30%设备投资和40%能耗 | — | [ |
| 2000 | Kellogg, BP | 英国Coryton炼油厂 | 改造烷基重整流程 | 改造后塔操作能力增加一倍 中间产物产量增加50% | — | [ |
| 2000 | BASF Montz | 南非Sosol公司 | 费托合成中回收碳氢化合物 | 板式塔,塔高107 m,塔径5.2 m | 当时世界上最大的隔板塔 | [ |
| 2002 | Koch-Glitsch | 西班牙CEPSA炼油厂 | 改造烷烃和异构烷烃分离精馏塔 | 增产异己烷的同时节能40% | — | [ |
| 2002 | BASF | 德国BASF SE工厂 | 未公开 | — | 全球首座工业化的四产品隔板塔 | [ |
| 2004 | Uhde | 德国ARAL芳烃公司 | 重整生成油中回收苯 | 能耗节省20% | 世界上第一座工业化的萃取隔板塔 | [ |
| 2005 | ExxonMobil | 英国Fawley炼油厂 法国Port Jerome炼油厂 | 改造二甲苯回收塔 | 二甲苯纯度提高,能耗降低53% | — | [ |
| 2005 | ExxonMobil | 荷兰鹿特丹石化厂 | 新建苯-甲苯-二甲苯隔板分离塔 | — | — | [ |
| 2010 | Lonza | 瑞士Visp生产基地 | 未公开 | 隔板塔可替代带侧线的精馏塔、间歇精馏塔和带薄膜蒸发器的精馏塔 | 全球首个多用途隔板塔 | [ |
表1 国外隔板塔工业化应用状况
Table 1 Industrialization of DWC technology abroad
| 年份 | 设计/建造公司 | 地点 | 应用装置/体系 | 效果 | 标志 | 文献 |
|---|---|---|---|---|---|---|
| 1999 | Sumitomo | 日本Kyowa Yuka公司 | 乙酸乙酯分离装置 | 侧线乙酸乙酯纯度99.99% 节省30%设备投资和40%能耗 | — | [ |
| 2000 | Kellogg, BP | 英国Coryton炼油厂 | 改造烷基重整流程 | 改造后塔操作能力增加一倍 中间产物产量增加50% | — | [ |
| 2000 | BASF Montz | 南非Sosol公司 | 费托合成中回收碳氢化合物 | 板式塔,塔高107 m,塔径5.2 m | 当时世界上最大的隔板塔 | [ |
| 2002 | Koch-Glitsch | 西班牙CEPSA炼油厂 | 改造烷烃和异构烷烃分离精馏塔 | 增产异己烷的同时节能40% | — | [ |
| 2002 | BASF | 德国BASF SE工厂 | 未公开 | — | 全球首座工业化的四产品隔板塔 | [ |
| 2004 | Uhde | 德国ARAL芳烃公司 | 重整生成油中回收苯 | 能耗节省20% | 世界上第一座工业化的萃取隔板塔 | [ |
| 2005 | ExxonMobil | 英国Fawley炼油厂 法国Port Jerome炼油厂 | 改造二甲苯回收塔 | 二甲苯纯度提高,能耗降低53% | — | [ |
| 2005 | ExxonMobil | 荷兰鹿特丹石化厂 | 新建苯-甲苯-二甲苯隔板分离塔 | — | — | [ |
| 2010 | Lonza | 瑞士Visp生产基地 | 未公开 | 隔板塔可替代带侧线的精馏塔、间歇精馏塔和带薄膜蒸发器的精馏塔 | 全球首个多用途隔板塔 | [ |
| 体系 | 隔板类型 | 目标函数 | 模拟软件 | 优化算法 | 优化结果 | 文献 |
|---|---|---|---|---|---|---|
| 乙酸提纯 | DWC | 再沸器负荷 | Hysys | 迭代试错法 | 较常规精馏序列能耗减少37.8% | [ |
异丙醇和水分离 吡啶和水分离 | ADWC-VRAP | TAC | Aspen | 迭代试错法 | 较常规ADWC能耗减少47%~80% | [ |
| 乙酸正丙酯生产 | RDWC | TAC | Matlab & Aspen | 网格自适应直接搜索算法 | 较常规反应精馏工艺TAC减少10.44% | [ |
| 混合醇分离 | DWC | TAC | Matlab & Aspen | 改进的粒子群算法 | 较常规粒子群算法TAC减少1.18% | [ |
| 苯和环己烯分离 | EDWC | TAC | Matlab & Aspen | 粒子群算法 | 较常规萃取精馏工艺可减少19.15%的TAC、36.08%的二氧化碳排放量、19.99%的㶲损失以及8.03%的萃取剂消耗量 | [ |
| 乙腈和正丙醇分离 | EDWC | TAC | Python & Aspen | 改进的和声搜索算法 | 较顺序迭代算法TAC可减少12.97% | [ |
| 混合苯分离 | DWC | 总投资成本 总运营成本 二氧化碳排放量 苯、二甲苯回收率 | Matlab & Aspen | 多目标NSGA-Ⅱ算法 | 较常规精馏序列总投资成本减少23%、总运营成本减少45%、二氧化碳排放量减少45% | [ |
| 二乙二醇单甲醚和N-甲基吡咯烷酮分离 | EDWC | 总投资成本 总运营成本 | Matlab & Aspen | 多目标遗传算法 | 较常规萃取精馏工艺能耗减少26.29%、TAC减少24.15% | [ |
| 乙酸乙酯和甲醇分离 | EDWC | TAC 二氧化碳排放量 过程安全指数(PRI) | Matlab & Aspen | 多目标粒子群算法 | 较四塔基础工艺TAC减少20.20%、二氧化碳排放量降低33.81%、安全指数提高18% | [ |
| 环己烷和环己烯分离 | EDWC | TAC 二氧化碳排放量 | Matlab & Aspen | 多目标NSGA-Ⅱ算法 | 较常规萃取精馏流程可减少9.46%的TAC和17.25%的二氧化碳排放 | [ |
表2 关于隔板精馏塔优化设计的研究汇总
Table 2 Summary of research progress on optimal design of DWC
| 体系 | 隔板类型 | 目标函数 | 模拟软件 | 优化算法 | 优化结果 | 文献 |
|---|---|---|---|---|---|---|
| 乙酸提纯 | DWC | 再沸器负荷 | Hysys | 迭代试错法 | 较常规精馏序列能耗减少37.8% | [ |
异丙醇和水分离 吡啶和水分离 | ADWC-VRAP | TAC | Aspen | 迭代试错法 | 较常规ADWC能耗减少47%~80% | [ |
| 乙酸正丙酯生产 | RDWC | TAC | Matlab & Aspen | 网格自适应直接搜索算法 | 较常规反应精馏工艺TAC减少10.44% | [ |
| 混合醇分离 | DWC | TAC | Matlab & Aspen | 改进的粒子群算法 | 较常规粒子群算法TAC减少1.18% | [ |
| 苯和环己烯分离 | EDWC | TAC | Matlab & Aspen | 粒子群算法 | 较常规萃取精馏工艺可减少19.15%的TAC、36.08%的二氧化碳排放量、19.99%的㶲损失以及8.03%的萃取剂消耗量 | [ |
| 乙腈和正丙醇分离 | EDWC | TAC | Python & Aspen | 改进的和声搜索算法 | 较顺序迭代算法TAC可减少12.97% | [ |
| 混合苯分离 | DWC | 总投资成本 总运营成本 二氧化碳排放量 苯、二甲苯回收率 | Matlab & Aspen | 多目标NSGA-Ⅱ算法 | 较常规精馏序列总投资成本减少23%、总运营成本减少45%、二氧化碳排放量减少45% | [ |
| 二乙二醇单甲醚和N-甲基吡咯烷酮分离 | EDWC | 总投资成本 总运营成本 | Matlab & Aspen | 多目标遗传算法 | 较常规萃取精馏工艺能耗减少26.29%、TAC减少24.15% | [ |
| 乙酸乙酯和甲醇分离 | EDWC | TAC 二氧化碳排放量 过程安全指数(PRI) | Matlab & Aspen | 多目标粒子群算法 | 较四塔基础工艺TAC减少20.20%、二氧化碳排放量降低33.81%、安全指数提高18% | [ |
| 环己烷和环己烯分离 | EDWC | TAC 二氧化碳排放量 | Matlab & Aspen | 多目标NSGA-Ⅱ算法 | 较常规萃取精馏流程可减少9.46%的TAC和17.25%的二氧化碳排放 | [ |
| 体系 | 隔板类型 | 控制结构 | MPC的预测模型 | 仿真软件 | 文献 |
|---|---|---|---|---|---|
| 乙醇/正丙醇/正丁醇分离 | DWC | 9输入9输出 MPC控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 氯硅烷混合物分离 | DWC | 7输入7输出 MPC控制结构 4输入4输出 MPC-PI混合控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 甲苯和2-甲氧基乙醇分离 | EDWC | 4输入4输出 MPC-PI混合控制结构 | 系统辨识获得的线性状态空间模型 | Matlab & Simulink & Aspen Dynamic | [ |
| 苯和环己烯分离 | EDWC | 4输入4输出 MPC控制结构 | 系统辨识获得的线性ARX模型 | Python & Matlab & Simulink & Aspen Dynamic | [ |
| C3的选择性加氢和分离 | RDWC | 8输入8输出 MPC控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 甲酸生产 | RDWC | 11输入11输出 MPC-PI混合控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 乙酸己酯和丁醇酯交换反应 | RDWC | 8输入8输出 MPC-PI混合控制结构 | 系统辨识得到的线性状态空间模型 | Matlab & Simulink & Aspen Custom Modeler | [ |
表3 隔板精馏塔模型预测控制结构研究汇总
Table 3 Summary of research progress on MPC control structures for DWC
| 体系 | 隔板类型 | 控制结构 | MPC的预测模型 | 仿真软件 | 文献 |
|---|---|---|---|---|---|
| 乙醇/正丙醇/正丁醇分离 | DWC | 9输入9输出 MPC控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 氯硅烷混合物分离 | DWC | 7输入7输出 MPC控制结构 4输入4输出 MPC-PI混合控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 甲苯和2-甲氧基乙醇分离 | EDWC | 4输入4输出 MPC-PI混合控制结构 | 系统辨识获得的线性状态空间模型 | Matlab & Simulink & Aspen Dynamic | [ |
| 苯和环己烯分离 | EDWC | 4输入4输出 MPC控制结构 | 系统辨识获得的线性ARX模型 | Python & Matlab & Simulink & Aspen Dynamic | [ |
| C3的选择性加氢和分离 | RDWC | 8输入8输出 MPC控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 甲酸生产 | RDWC | 11输入11输出 MPC-PI混合控制结构 | 稳态点近似线性化状态空间模型 | Simulink & Aspen Dynamic | [ |
| 乙酸己酯和丁醇酯交换反应 | RDWC | 8输入8输出 MPC-PI混合控制结构 | 系统辨识得到的线性状态空间模型 | Matlab & Simulink & Aspen Custom Modeler | [ |
| [1] | 冯霄, 王彧斐. 化工节能原理与技术(第四版)[M]. 北京: 化学工业出版社, 2015. |
| Feng X, Wang Y F. Principle and Technology of Chemical Energy Saving (4th Edition)[M]. Beijing: Chemical Industry Press, 2015. | |
| [2] | 王文堂, 马兴良. 化工节能技术手册[M]. 北京: 化学工业出版社, 2006. |
| Wang W T, Ma X L. Handbook of Chemical Engineering Energy Saving Technologies[M]. Beijing: Chemical Industry Press, 2006. | |
| [3] | De Koeijer G, Kjelstrup S. Minimizing entropy production rate in binary tray distillation[J]. International Journal of Thermodynamics, 2000, 3(3): 105-110. |
| [4] | Kiss A A, Flores Landaeta S J, Infante Ferreira C A. Towards energy efficient distillation technologies-Making the right choice[J]. Energy, 2012, 47(1): 531-542. |
| [5] | 胡雨奇, 方静, 李春利. 隔壁塔设计与控制的研究进展[J]. 天津工业大学学报, 2015, 34(3): 41-46. |
| Hu Y Q, Fang J, Li C L. Progress in design method and controllability of dividing wall column[J]. Journal of Tianjin Polytechnic University, 2015, 34(3): 41-46. | |
| [6] | Dejanović I, Matijašević L, Olujić Ž. Dividing wall column—A breakthrough towards sustainable distilling[J]. Chemical Engineering and Processing - Process Intensification, 2010, 49(6): 559-580. |
| [7] | 牟祖霖, 盖晓龙, 袁希钢. 三组分精馏隔板塔的操作柔性模拟与分析[J]. 化工学报, 2016, 67(2): 573-579. |
| Mu Z L, Ge X L, Yuan X G. Simulation and analysis of operation flexibility of divided wall column for ternary distillation[J]. CIESC Journal, 2016, 67(2): 573-579. | |
| [8] | Yildirim Ö, Kiss A A, Kenig E Y. Dividing wall columns in chemical process industry: a review on current activities[J]. Separation and Purification Technology, 2011, 80(3): 403-417. |
| [9] | Luster E W. Apparatus for fractionating cracked products: US1915681[P]. 1933-06-27. |
| [10] | Wright R O. Fractionation apparatus: US2471134[P]. 1949-05-24. |
| [11] | Schultz M A, Stewart D G, Harris J M, et al. Reduce costs with dividing-wall columns[J]. Chemical Engineering Progress, 2002, 98(5): 64-71. |
| [12] | Kaibel D G. Distillation columns with vertical partitions[J]. Chemical Engineering & Technology, 1987, 10(1): 92-98. |
| [13] | Kaibel B, Jansen H, Zich E, et al. Unfixed dividing wall technology for packed and tray distillation columns[C]// Distillation Absorption. London, 2006, 152: 252-266. |
| [14] | Olujiæ B K, Jansen H, Rietfort T, et al. Distillation column internals/configurations for process intensification[J]. Chemical and Biochemical Engineering Quarterly, 2003, 7(4): 301-309. |
| [15] | Parkinson G. Drip and drop in column internals[J]. Chemical Engineering, 2000, 107(7): 27. |
| [16] | Kaibel G, Stroezel M, Rheude U. Dividing wall column for continuous fractionation of multicomponent mixtures by distillation: US5914012[P]. 1999-06-22. |
| [17] | Spencer G, Plana Ruiz FJ. Consider dividing wall distillation to separate solvents[J]. Hydrocarbon Processing, 2005, 84(7): 90-94. |
| [18] | Olujić Ž, Jödecke M, Shilkin A, et al. Equipment improvement trends in distillation[J]. Chemical Engineering and Processing-Process Intensification, 2009, 48(6): 1089-1104. |
| [19] | Kolbe B, Wenzel S. Novel distillation concepts using one-shell columns[J]. Chemical Engineering and Processing-Process Intensification, 2004, 43(3): 339-346. |
| [20] | Slade B, Stober B, Simpson D. Dividing wall column revamp optimises mixed xylenes production[C]// Distillation Absorption. London, 2006(152): 1-10. |
| [21] | Parkinson G. Dividing-wall columns find greater appeal[J]. Chemical Engineering Progress, 2007, 103(5): 8-11. |
| [22] | Staak D, Grützner T, Schwegler B, et al. Dividing wall column for industrial multi purpose use[J]. Chemical Engineering and Processing - Process Intensification, 2014, 75: 48-57. |
| [23] | 凌笑媚, 郑伟跃, 王晓达, 等. 隔壁反应精馏技术进展[J]. 化工进展, 2017, 36(08): 2776-2786. |
| Ling X M, Zheng W Y, Wang X D, et al. Advances in technology of reactive dividing wall column[J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2776-2786. | |
| [24] | 刘铁勇, 唐红萍, 国洪超, 等. 用于分离催化重整脱戊烷油的隔壁塔精馏系统: 108949218A[P]. 2018-12-07. |
| Liu T Y, Tang H P, Guo H C, et al. Dividing wall column distillation system for separating catalytic reforming pentane-free oil: 108949218A[P]. 2018-12-07. | |
| [25] | 谢润兴, 刘铁勇, 唐红萍, 等. 一种利用隔壁塔组合多效精馏生产甲醇的装置: 107551586A[P]. 2018-01-09. |
| Xie R X, Liu T Y, Tang H P, et al. Device for producing methanol by utilizing dividing wall column combination multi-effect distillation: 107551586A[P]. 2018-01-09. | |
| [26] | 唐红萍, 刘铁勇, 董凤蕾, 等. 用于调整重整油的分离装置以及分离方法: 114752406A[P]. 2022-07-15. |
| Tang H P, Liu T Y, Dong F L, et al. Separation device and separation method for conditioning reformate: 114752406A[P]. 2022-07-15. | |
| [27] | 孙津生, 刘思瑶, 崔承天, 等. 无杂醇油隔壁塔耦合甲醇多效精馏节能装置及方法: 109646980A[P]. 2019-04-19. |
| Sun J S, Liu S Y, Cui C T, et al. Energy-saving non-fusel oil dividing wall column-coupled multi-effect methanol rectification device and method: 109646980A[P]. 2019-04-19. | |
| [28] | 张豪豪, 郑开学, 陈锦溢, 等. 一种新型三氯氢硅精馏工艺: 116639698A[P]. 2023-08-25. |
| Zhang H H, Zheng K X, Chen J Y, et al. A novel distillation process for purifying trichlorosilane: 116639698A[P]. 2023-08-25. | |
| [29] | 陈锦溢, 华超, 张豪豪, 等. 一种由混合氯硅烷制备高纯硅烷的工艺: 118183753A[P]. 2024-06-14. |
| Chen J Y, Hua C, Zhang H H, et al. A process for producing high-purity silane from mixed chlorosilanes: 118183753A[P]. 2024-06-14. | |
| [30] | Wang W L, Zhang H H, Wang Y J, et al. Fast explicit machine learning-based model predictive control of nonlinear processes using input convex neural networks[J]. Industrial & Engineering Chemistry Research, 2024, 63(40): 17279-17293. |
| [31] | Abril Andrés F.. Aspen Plus - Matlab link[EB/OL]. [2025-01-21]. . |
| [32] | Ye Q L, Wang Y L, Pan H, et al. Design and control of extractive dividing wall column for separating dipropyl ether/1-propyl alcohol mixture[J]. Processes, 2022, 10(4): 665. |
| [33] | Yang A, Wei R X, Sun S R, et al. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 8036-8056. |
| [34] | Gill P E, Murray W, Saunders M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
| [35] | Segovia-Hernández J G, Gómez-Castro F I. Stochastic process optimization using Aspen Plus® [M]. Milton: Taylor & Francis Group, 2017. |
| [36] | Zhang H H, Lu P, Ding Z, et al. Design optimization and control of dividing wall column for purification of trichlorosilane[J]. Chemical Engineering Science, 2022, 257: 117716. |
| [37] | Kiss A A, Suszwalak D J C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns[J]. Separation and Purification Technology, 2012, 86: 70-78. |
| [38] | Javaloyes-Antón J, Ruiz-Femenia R, Caballero J A. Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15621-15634. |
| [39] | Briones-Ramírez A, Gutiérrez-Antonio C. Dividing wall distillation columns for separation of azeotropic mixtures: feasibility procedure and rigorous optimization[J]. Computer Aided Chemical Engineering, 2009, 26: 555-560. |
| [40] | Bravo-Bravo C, Segovia-Hernández J G, Gutiérrez-Antonio C, et al. Extractive dividing wall column: design and optimization[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3672-3688. |
| [41] | 何方, 魏顺安. 改进的遗传算法应用于精馏过程强化的优化研究[EB/OL]. 北京: 中国科技论文在线[2025-01-22].. |
| He F, Wei S A. The simulation of improved genetic algorithm into DWC[EB/OL]. Beijing: China Sciencepaper Online[2025-01-22].. | |
| [42] | Li M, Cui Y, Shi X J, et al. Simulated annealing-based optimal design of energy efficient ternary extractive dividing wall distillation process for separating benzene-isopropanol-water mixtures[J]. Chinese Journal of Chemical Engineering, 2021, 33: 203-210. |
| [43] | Yang A, Su Y, Sun S R, et al. Towards sustainable separation of the ternary azeotropic mixture based on the intensified reactive-extractive distillation configurations and multi-objective particle swarm optimization[J]. Journal of Cleaner Production, 2022, 332: 130116. |
| [44] | Ding Z, Zhang H H, Li H, et al. Improved harmony search algorithm for enhancing efficiency and quality in optimization of the distillation process[J]. ACS Omega, 2023, 8(31): 28487-28498. |
| [45] | Sun S R, Yang A, Chang C L, et al. Improved multiobjective particle swarm optimization integrating mutation and changing inertia weight strategy for optimal design of the extractive single and double dividing wall column[J]. Industrial & Engineering Chemistry Research, 2023, 62(43): 17923-17936. |
| [46] | Long N V D, Lee S, Lee M. Design and optimization of a dividing wall column for debottlenecking of the acetic acid purification process[J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(8): 825-835. |
| [47] | Shi L, Huang K J, Wang S J, et al. Application of vapor recompression to heterogeneous azeotropic dividing-wall distillation columns[J]. Industrial & Engineering Chemistry Research, 2015, 54(46): 11592-11609. |
| [48] | Feng Z M, Shen W F, Rangaiah G P, et al. Process development, assessment, and control of reactive dividing-wall column with vapor recompression for producing n-propyl acetate[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 276-295. |
| [49] | Liang M K, Song J Y, Zhao K F, et al. Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm[J]. Computers & Chemical Engineering, 2022, 166: 107978. |
| [50] | 张豪豪, 李运昌, 刘宇航, 等. 优化设计萃取隔板精馏塔分离苯-环己烯体系[J]. 化学工程, 2024, 52(7): 1-6. |
| Zhang H H, Li Y C, Liu Y H, et al. Optimal design of extractive dividing wall column for separating benzene-cyclohexene [J]. Chemical Engineering(China), 2024, 52(7): 1-6. | |
| [51] | Pandit S R, Jana A K. Transforming conventional distillation sequence to dividing wall column: minimizing cost, energy usage and environmental impact through genetic algorithm[J]. Separation and Purification Technology, 2022, 297: 121437. |
| [52] | Lee A, Gu J, Chaniago Y D, et al. Extractive-dividing-wall column and multi-objective optimizations of green entrainer-based ultra-high-purity recovery of methyl di glycol and N-methyl-2-pyrrolidone[J]. Separation and Purification Technology, 2023, 324: 124533. |
| [53] | Yang A, Kong Z Y, Sun S R, et al. Design and multiobjective optimization of a novel double extractive dividing wall column with a side reboiler scheme for the recovery of ethyl acetate and methanol from wastewater[J]. Industrial & Engineering Chemistry Research, 2023, 62(44): 18591-18602. |
| [54] | 刘澳琦, 李强, 石晓青, 等. 隔壁萃取精馏分离环己烷-环己烯过程的模拟与优化[J]. 石油炼制与化工, 2024, 55(5): 135-140. |
| Liu A Q, Li Q, Shi X Q, et al. Simulation and optimization of extractive dividing wall column for cyclohexane/cyclohexene separation[J]. Petroleum Processing and Petrochemicals, 2024, 55(5): 135-140. | |
| [55] | Osuolale F N, Zhang J. Energy efficiency optimisation for distillation column using artificial neural network models[J]. Energy, 2016, 106: 562-578. |
| [56] | Ibrahim D, Jobson M, Li J, et al. Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine[J]. Chemical Engineering Research and Design, 2018, 134: 212-225. |
| [57] | Ye L X, Zhang N, Li G H, et al. Intelligent optimization design of distillation columns using surrogate models based on GA-BP[J]. Processes, 2023, 11(8): 2386. |
| [58] | Caballero M, Kiss A A, Somoza-Tornos A. Optimization-based design of distillation columns using surrogate models[C]// Proceedings of the 34th European Symposium on Computer Aided Process Engineering / 15th International Symposium on Process Systems Engineering. Italy: Florence, 2024, 53: 589-594. |
| [59] | Jia S K, Qian X, Yuan X G. Optimal design for dividing wall column using support vector machine and particle swarm optimization[J]. Chemical Engineering Research and Design, 2017, 125: 422-432. |
| [60] | Yuan Y, Tao X Y, Huang K J, et al. Multi-objective optimization and composition control of Sargent dividing-wall distillation columns[J]. Journal of Cleaner Production, 2023, 423: 138637. |
| [61] | Lu J W, Wang Q, Zhang Z X, et al. Surrogate modeling-based multi-objective optimization for the integrated distillation processes[J]. Chemical Engineering and Processing-Process Intensification, 2021, 159: 108224. |
| [62] | Harmsen J. Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation[J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(1): 70-73. |
| [63] | Kiss A A, Rewagad R R. Energy efficient control of a BTX dividing-wall column[J]. Computers & Chemical Engineering, 2011, 35(12): 2896-2904. |
| [64] | 苑杨.隔离壁精馏塔的设计与控制[D]. 北京: 北京化工大学, 2018. |
| Yuan Y. Design and control of dividing-wall distillation columns[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
| [65] | Wolff E A, Skogestad S. Operation of integrated three-product (Petlyuk) distillation columns[J]. Industrial & Engineering Chemistry Research, 1995, 34(6): 2094-2103. |
| [66] | Mutalib M I A, Smith R. Operation and control of dividing wall distillation columns(Part 1): Degrees of freedom and dynamic simulation[J]. Chemical Engineering Research and Design, 1998, 76(3): 308-318. |
| [67] | Serra M, Espuña A, Puigjaner L. Control and optimization of the divided wall column[J]. Chemical Engineering and Processing - Process Intensification, 1999, 38(4/5/6): 549-562. |
| [68] | Serra M, Perrier M, Espuña A, et al. Study of the divided wall column controllability: influence of design and operation[J]. Computers & Chemical Engineering, 2000, 24(2/3/4/5/6/7): 901-907. |
| [69] | Serra M, Perrier M, Espuña A, et al. Analysis of different control possibilities for the divided wall column: feedback diagonal and dynamic matrix control[J]. Computers & Chemical Engineering, 2001, 25(4/5/6): 859-866. |
| [70] | Ling H, Luyben W L. New control structure for divided-wall columns[J]. Industrial & Engineering Chemistry Research, 2009, 48(13): 6034-6049. |
| [71] | Ling H, Cai Z, Wu H, et al. Remixing control for divided-wall columns[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12694-12705. |
| [72] | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken: Wiley, 2013. |
| [73] | Wang S J, Wong D S H. Controllability and energy efficiency of a high-purity divided wall column[J]. Chemical Engineering Science, 2007, 62(4): 1010-1025. |
| [74] | Ling H, Luyben W L. Temperature control of the BTX divided-wall column[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 189-203. |
| [75] | Luan S J, Huang K J, Wu N. Operation of dividing-wall columns. 1. A simplified temperature difference control scheme[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2642-2660. |
| [76] | Wu N, Huang K J, Luan S J. Operation of dividing-wall distillation columns. 2. A double temperature difference control scheme[J]. Industrial & Engineering Chemistry Research, 2013, 52(15): 5365-5383. |
| [77] | Feng Z M, Shen W F, Rangaiah G P, et al. Proportional-integral control and model predictive control of extractive dividing-wall column based on temperature differences[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 10572-10590. |
| [78] | Zhang H H, Chen J Y, Hua C, et al. Proportional-integral control and ARX-based model predictive control for extractive dividing-wall column[J]. Chemical Engineering and Processing-Process Intensification, 2024, 196: 109643. |
| [79] | Qian X, Jia S K, Luo Y Q, et al. Control of reactive dividing-wall column for selective hydrogenation and separation of C3 stream[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1213-1228. |
| [80] | Feng Z M, Shen W F, Rangaiah G P, et al. Closed-loop identification and model predictive control of extractive dividing-wall column[J]. Chemical Engineering and Processing-Process Intensification, 2019, 142: 107552. |
| [81] | Zheng L, Cai W F, Zhang X B, et al. Design and control of reactive dividing-wall column for the synthesis of diethyl carbonate[J]. Chemical Engineering and Processing - Process Intensification, 2017, 111: 127-140. |
| [82] | Xia M, Yu B R, Wang Q Y, et al. Design and control of extractive dividing-wall column for separating methylal-methanol mixture[J]. Industrial & Engineering Chemistry Research, 2012, 51(49): 16016-16033. |
| [83] | Dai X, Ye Q, Yu H, et al. Design and control of dividing-wall column for the synthesis of n-propyl propionate by reactive distillation[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3919-3932. |
| [84] | An D C, Cai W F, Xia M, et al. Design and control of reactive dividing-wall column for the production of methyl acetate[J]. Chemical Engineering and Processing - Process Intensification, 2015, 92: 45-60. |
| [85] | Wang H H, Zhou Q, Su W Y, et al. Optimization and control of vertical double-wall dividing-wall column for separating a quaternary system[J]. The Canadian Journal of Chemical Engineering, 2020, 98(10): 2166-2186. |
| [86] | Van Diggelen R C, Kiss A A, Heemink A W. Comparison of control strategies for dividing-wall columns[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 288-307. |
| [87] | Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764. |
| [88] | Zhang P. Advanced Industrial Control Technology[M]. Amsterdam: William Andrew/Elsevier, 2010: 41-70. |
| [89] | Dohare R K, Singh K, Kumar R. Modeling and model predictive control of dividing-wall column for separation of benzene-toluene-o-xylene[J]. Systems Science & Control Engineering, 2015, 3(1): 142-153. |
| [90] | Adrian T, Schoenmakers H, Boll M. Model predictive control of integrated unit operations: control of a divided-wall column[J]. Chemical Engineering and Processing - Process Intensification, 2004, 43(3): 347-355. |
| [91] | Buck C, Hiller C, Fieg G. Applying model predictive control to dividing-wall columns[J]. Chemical Engineering & Technology, 2011, 34(5): 663-672. |
| [92] | Rewagad R R, Kiss A A. Dynamic optimization of a dividing-wall column using model predictive control[J]. Chemical Engineering Science, 2012, 68(1): 132-142. |
| [93] | Rodríguez M, Li P Z, Díaz I. A control strategy for extractive and reactive dividing-wall columns[J]. Chemical Engineering and Processing-Process Intensification, 2017, 113: 14-19. |
| [94] | Wang J X, Yu N, Chen M Q, et al. Composition control and temperature inferential control of dividing-wall column based on model predictive control and PI strategies[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1087-1101. |
| [95] | Qian X, Jia S K, Skogestad S, et al. Model predictive control of reactive dividing-wall column for the selective hydrogenation and separation of a C3 stream in an ethylene plant[J]. Industrial & Engineering Chemistry Research, 2016, 55(36): 9738-9748. |
| [96] | Ge X L, Yang X C, Han Y C, et al. Optimal design, proportional-integral control, and model predictive control of intensified process for formic acid production. 1. Reactive distillation and reactive dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2020, 59(51): 22215-22230. |
| [97] | Horsch A S, Egger L S, Fieg G. Linear model predictive control for a reactive dividing-wall column[C]// European Control Conference. Russia: St. Petersburg, 2020: 1060-1065. |
| [98] | MathWorks. Design and cosimulate control of high-fidelity distillation tower with Aspen Plus Dynamics[EB/OL]. [2025-01-21]. . |
| [99] | Qian X, Dang Q M, Jia S K, et al. Operation of distillation columns using model predictive control based on dynamic mode decomposition method[J]. Industrial & Engineering Chemistry Research, 2023, 62(50): 21721-21739. |
| [100] | Zhang H, Ye Q, Qin J W, et al. Design and control of extractive dividing-wall column for separating ethyl acetate-isopropyl alcohol mixture[J]. Industrial & Engineering Chemistry Research, 2014, 53(3): 1189-1205. |
| [101] | Tututi-Avila S, Jiménez-Gutiérrez A, Hahn J. Control analysis of an extractive dividing-wall column used for ethanol dehydration[J]. Chemical Engineering and Processing-Process Intensification, 2014, 82: 88-100. |
| [102] | Li L M, Guo L J, Tu Y Q, et al. Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation: design and control[J]. Computers & Chemical Engineering, 2017, 99: 117-134. |
| [103] | Dwivedi D. Control and operation of dividing-wall columns with vapor split manipulation[D]. Trondheim: Norwegian University of Science and Technology, 2013. |
| [104] | 陈文义, 孙姣, 葛化强, 等. 隔板塔气体调配装置数值模拟及实验研究[J]. 化工学报, 2015, 66(10): 4032-4038. |
| Chen W Y, Sun J, Ge H Q, et al. CFD simulation and experimental research on vapour splitter in divided wall column[J]. CIESC Journal, 2015, 66(10): 4032-4038. | |
| [105] | Li C L, Li J Y, Li D C, et al. Experimental study and CFD numerical simulation of an innovative vapor splitter in dividing wall column[J]. AIChE Journal, 2020, 66(8): e16266. |
| [106] | Luyben W L. Vapor split manipulation in extractive divided-wall distillation columns[J]. Chemical Engineering and Processing-Process Intensification, 2018, 126: 132-140. |
| [107] | Zhu J X, Jing C, Hao L, et al. Insight into controllability and operation of extractive dividing-wall column[J]. Separation and Purification Technology, 2021, 263: 118362. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [3] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [4] | 李琳, 王明媚, 宋二伟, 王雯雯, 张耀昌, 王二强. 异戊二烯-正戊烷分离工艺的热力学分析及优化[J]. 化工学报, 2025, 76(6): 2549-2558. |
| [5] | 向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637. |
| [6] | 王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732. |
| [7] | 时任泽, 丁秋燕, 袁振军, 那健, 刘见华, 郭树虎, 赵雄, 李洪, 高鑫. 4N电子级二乙氧基甲基硅烷的纯化技术研究[J]. 化工学报, 2025, 76(5): 2186-2197. |
| [8] | 郭明钢, 杨晓航, 代岩, 米盼盼, 马世鑫, 贺高红, 肖武, 崔福军. 贫氦管输天然气提氦多元化产品耦合工艺优化设计[J]. 化工学报, 2025, 76(5): 2251-2261. |
| [9] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [10] | 杨端康慧, 周文晋, 刘琳琳. 考虑压缩机分组级联布置的氢网络综合[J]. 化工学报, 2025, 76(3): 1102-1110. |
| [11] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [12] | 杨林睿, 刘鉴漪, 李玲, 何永超, 郑凯天, 任建坡, 许春建. 苯/环己烷/环己烯萃取精馏过程的流程设计与节能[J]. 化工学报, 2025, 76(2): 731-743. |
| [13] | 孟祥军, 杨林睿, 彭立培, 杨献奎, 花莹曦, 张人仁, 郑凯天, 许春建. 三氟化氮精馏分离流程的设计与控制[J]. 化工学报, 2025, 76(2): 707-717. |
| [14] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
| [15] | 郭恭涵, 丁晖殿, 李强, 贾胜坤, 钱行, 苑杨, 陈海胜, 罗祎青. 间歇精馏操作过程的动态贝叶斯优化方法[J]. 化工学报, 2025, 76(2): 755-768. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号