| [1] |
He T, Pachfule P, Wu H, et al. Hydrogen carriers[J]. Nature Reviews Materials, 2016, 1(12): 16059.
|
| [2] |
Kovač A, Paranos M, Marciuš D. Hydrogen in energy transition: a review[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10016-10035.
|
| [3] |
Cardoso K R, Roche V, Jorge A M, et al. Hydrogen storage in MgAlTiFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 858: 158357.
|
| [4] |
Zhang Y, Yang F S, Zhao F Q, et al. Interaction mechanism between metal hydrides and energetic compounds: an extensive literature survey[J]. FirePhysChem, 2022, 2(4): 303-314.
|
| [5] |
Amiri A, Shahbazian-Yassar R. Recent progress of high-entropy materials for energy storage and conversion[J]. Journal of Materials Chemistry A, 2021, 9(2): 782-823.
|
| [6] |
Sarajan Z. Preparation of A356 foam aluminum by means of titanium hydride[J]. Metal Science and Heat Treatment, 2017, 59(5): 352-356.
|
| [7] |
Jiang C L, Zhang J B, Hu R, et al. Energy release characteristics of PTFE/Al/TiH2 reactive jet with different TiH2 content[J]. Defence Technology, 2024, 39: 168-176.
|
| [8] |
李丹一, 程扬帆, 李翔, 等. Al/PTFE/TiH2三元活性材料与RDX组合装药的爆炸释能特性[J]. 兵工学报, 2025, 46(1): 37-47.
|
|
Li D Y, Cheng Y F, Li X, et al. Explosion energy release characteristics of composite charge containing Al/PTFE/TiH2 ternary reactive materials and RDX[J]. Acta Armamentarii, 2025, 46(1): 37-47.
|
| [9] |
Wang H, Cheng Y F, Zhu S J, et al. Effects of content and particle size of TiH2 powders on the energy output rules of RDX composite explosives[J]. Defence Technology, 2024, 32: 297-308.
|
| [10] |
Cheng Y F, Meng X R, Feng C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.
|
| [11] |
Cheng Y F, Meng X R, Ma H H, et al. Flame propagation behaviors and influential factors of TiH2 dust explosions at a constant pressure[J]. International Journal of Hydrogen Energy, 2018, 43(33): 16355-16363.
|
| [12] |
Cheng Y F, Song S X, Ma H H, et al. Hybrid H2/Ti dust explosion hazards during the production of metal hydride TiH2 in a closed vessel[J]. International Journal of Hydrogen Energy, 2019, 44(21): 11145-11152.
|
| [13] |
Yang Y, Luo Z M, Ding X H, et al. Effects of dust concentration, particle size, and crude oil concentration on the explosion characteristics of oil-immersed coal dust[J]. Fuel, 2024, 356: 129596.
|
| [14] |
Jiang H P, Bi M S, Li B, et al. Combustion behaviors and temperature characteristics in pulverized biomass dust explosions[J]. Renewable Energy, 2018, 122: 45-54.
|
| [15] |
Chang P J, Mogi T, Dobashi R. An investigation on the dust explosion of micron and nano scale aluminium particles[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437.
|
| [16] |
Zhang J S, Sun L H, Sun T L, et al. Study on explosion risk of aluminum powder under different dispersions[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104042.
|
| [17] |
Zhu C C, Jiang H P, Jin S L, et al. Explosion characteristics of AlH3 dust cloud with varying micron particle sizes[J]. International Journal of Hydrogen Energy, 2024, 78: 572-579.
|
| [18] |
Hu F F, Cheng Y F, Zhang B B, et al. Flame propagation and temperature distribution characteristics of magnesium dust clouds in an open space[J]. Powder Technology, 2022, 404: 117513.
|
| [19] |
Li S Z, Cheng Y F, Wang R, et al. Suppression effects and mechanisms of three typical solid suppressants on titanium hydride dust explosions[J]. Process Safety and Environmental Protection, 2023, 177: 688-698.
|
| [20] |
Li Q Z, Lin B Q, Dai H M, et al. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures[J]. Powder Technology, 2012, 229: 222-228.
|
| [21] |
Castellanos D, Carreto-Vazquez V H, Mashuga C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust[J]. Powder Technology, 2014, 254: 331-337.
|
| [22] |
Song S X, Cheng Y F, Meng X R, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel[J]. Process Safety and Environmental Protection, 2019, 122: 281-287.
|
| [23] |
Trunov M, Schoenitz M, Dreizin E. Ignition of aluminum powders under different experimental conditions[J]. Propellants, Explosives, Pyrotechnics, 2005, 30(1): 36-43.
|
| [24] |
Tang F D, Higgins A J, Goroshin S. Effect of discreteness on heterogeneous flames: propagation limits in regular and random particle arrays[J]. Combustion Theory and Modelling, 2009, 13(2): 319-341.
|
| [25] |
Cheng Y F, Wu H B, Liu R, et al. Combustion behaviors and explosibility of suspended metal hydride TiH2 dust[J]. International Journal of Hydrogen Energy, 2020, 45(21): 12216-12224.
|
| [26] |
Hanai H, Kobayashi H, Niioka T. A numerical study of pulsating flame propagation in mixtures of gas and particles[J]. Proceedings of the Combustion Institute, 2000, 28(1): 815-822.
|
| [27] |
Torrado D, Pinilla A, Amin M, et al. Numerical study of the influence of particle reaction and radiative heat transfer on the flame velocity of gas/nanoparticles hybrid mixtures[J]. Process Safety and Environmental Protection, 2018, 118: 211-226.
|
| [28] |
Fan W P, Gao Y, Zhang Y M, et al. Numerical studies on turbulent flame propagation in premixed gas deflagration inside a tube[J]. Building Simulation, 2020, 13(4): 849-864.
|
| [29] |
Zhang Q W, Cheng Y F, Zhang B B, et al. Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds[J]. Defence Technology, 2024, 31: 471-483.
|
| [30] |
Wang Z H, Cheng Y F, Mogi T, et al. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104876.
|