化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4331-4340.DOI: 10.11949/0438-1157.20250144
收稿日期:2025-02-17
修回日期:2025-04-21
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
赵玉来
作者简介:叶鑫煌(1995—),男,硕士研究生,609657989@qq.com
基金资助:
Xinhuang YE(
), Jiahao XUE, Yulai ZHAO(
)
Received:2025-02-17
Revised:2025-04-21
Online:2025-08-25
Published:2025-09-17
Contact:
Yulai ZHAO
摘要:
合成了具有不同长度连接链的可聚型阳离子Gemini表面活性剂PC11-n-11(n=2, 4, 6),采用核磁共振波谱仪(1H NMR)和红外光谱仪(FTIR)对结构进行了表征,研究了连接链长度对PC11-n-11的界面性能、胶束直径分布、润湿性能和高内相乳液(HIPE)稳定性的影响规律。结果表明,制备的PC11-n-11的界面性能明显优于传统表面活性剂(DTAB),且润湿性能强。随着连接链长度的增加,临界胶束浓度(CMC)和最大表面吸附容量(Γmax)逐渐减小,每个表面活性剂分子所占据的最小面积(Amin)逐渐增大,界面性能更好,形成的胶束直径先增大后减小,对疏水性表面的润湿性也更好。其中PC11-4-11和PC11-6-11对HIPE的稳定性好,以PC11-6-11为稳定剂通过HIPE模板法成功制备了壳聚糖和聚丙烯酰胺复合的多孔聚合物。
中图分类号:
叶鑫煌, 薛嘉豪, 赵玉来. 可聚型Gemini表面活性剂的制备、表征及其稳定高内相乳液的研究[J]. 化工学报, 2025, 76(8): 4331-4340.
Xinhuang YE, Jiahao XUE, Yulai ZHAO. Synthesis and characterization of polymerizable Gemini surfactants: stabilization of high internal phase emulsion[J]. CIESC Journal, 2025, 76(8): 4331-4340.
| Surfactants | DTAB[ | PC11-2-11 | PC11-4-11 | PC11-6-11 |
|---|---|---|---|---|
| CMC/(mol·L-1) | 14.72×10-3 | 2.71×10-3 | 1.46×10-3 | 8.70×10-4 |
| γCMC/(mN·m-1) | 38.7 | 34.5 | 36.2 | 37.6 |
| Γmax/(10-10 mol·cm-2) | 2.60 | 1.44 | 1.28 | 1.19 |
| Amin/nm2 | 0.64 | 1.15 | 1.30 | 1.39 |
表1 表面活性剂水溶液在25℃条件下的表面活性参数
Table 1 Surface active of surfactant aqueous solution at 25℃
| Surfactants | DTAB[ | PC11-2-11 | PC11-4-11 | PC11-6-11 |
|---|---|---|---|---|
| CMC/(mol·L-1) | 14.72×10-3 | 2.71×10-3 | 1.46×10-3 | 8.70×10-4 |
| γCMC/(mN·m-1) | 38.7 | 34.5 | 36.2 | 37.6 |
| Γmax/(10-10 mol·cm-2) | 2.60 | 1.44 | 1.28 | 1.19 |
| Amin/nm2 | 0.64 | 1.15 | 1.30 | 1.39 |
图3 11-溴甲基丙烯酸十一酯(a), PC11-2-11 (b), PC11-4-11 (c), PC11-6-11 (d)的1H NMR谱图
Fig.3 1H NMR spectra of 11-bromomethyl acrylate(a), PC11-2-11 (b), PC11-4-11 (c) and PC11-6-11 (d)
图9 静置0.5 h、5 h、5 d、15 d乳液分层情况[乳化剂浓度为0.3%(质量)]
Fig.9 Emulsion stratification conditions after standing for 0.5 h, 5 h, 5 d and 15 d, respectively[emulsifiers concentration: 0.3%(mass)]
图10 高内相乳液在50℃下加热24 h前[(a) ~ (d)]和后[(e) ~ (h)]的微观形态的显微镜照片[乳化剂浓度为0.3%(质量)]
Fig.10 Microscopic photos of microscopic appearance of high internal phase emulsion before [(a) — (d)] and after [(e) — (h)] heating at 50℃ for 24 h[emulsifiers concentration: 0.3%(mass)]
| [1] | Fan Y X, Han Y C, Wang Y L. Effects of molecular structures on aggregation behavior of Gemini surfactants in aqueous solutions[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 214-226. |
| [2] | 牟洪亮, 丁伟, 刘向斌, 等. 两性双子表面活性剂合成研究进展[J]. 日用化学工业, 2017, 47(8): 468-475. |
| Mu H L, Ding W, Liu X B, et al. Progress in field for synthesis of zwitterionic Gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2017, 47(8): 468-475. | |
| [3] | Dabiri A, Honarvar B. Investigation of interfacial tension reduction, wettability alteration, and oil recovery using a new non-ionic oil-based surfactant from Gemini surfactants family coupled with low-salinity water: experimental study on oil-wet carbonate rock[J]. Journal of Surfactants and Detergents, 2020, 23(4): 821-829. |
| [4] | Shakil Hussain S M, Kamal M S, Solling T, et al. Surface and thermal properties of synthesized cationic poly(ethylene oxide) Gemini surfactants: the role of the spacer[J]. RSC Advances, 2019, 9(52): 30154-30163. |
| [5] | Li R Q, Zhang J L, Zhao J L, et al. Research progress on polymerizable Gemini surfactants [J]. Daily Chemical Industry, 2018, 48(4): 231-236. |
| [6] | Liu H Z, Wang L N, Wang M H, et al. Engineered multifunctional fluorinated film based on semicontinuous emulsion polymerization using polymerizable quaternary ammonium emulsifiers[J]. International Journal of Polymer Science, 2018, 2018(1): 5659137. |
| [7] | Prateepmaneerak N, Chaiyasat A, Kaewpa D, et al. Innovative bifunctional heat storage nanocapsules containing polymerizable surfactant for antimicrobial thermoregulating clothes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129954. |
| [8] | Machotová J, Kalendová A, Steinerová D, et al. Water-resistant latex coatings: tuning of properties by polymerizable surfactant, covalent crosslinking and nanostructured ZnO additive[J]. Coatings, 2021, 11(3): 347. |
| [9] | Hatakeyama E S, Wiesenauer B R, Gabriel C J, et al. Nanoporous, bicontinuous cubic lyotropic liquid crystal networks via polymerizable Gemini ammonium surfactants[J]. Chemistry of Materials, 2010, 22(16): 4525-4527. |
| [10] | Hou X, Chang L, Zheng C X, et al. Synthesis and characterization of polyHIPEs using a polymerizable polyurethane macromolecular surfactant[J]. Colloid and Polymer Science, 2024, 302(9): 1373-1384. |
| [11] | Zhang T, Xu Z G, Chi H J, et al. Closed-cell, phase change material-encapsulated monoliths from a reactive surfactant-stabilized high internal phase emulsion for thermal energy storage[J]. ACS Applied Polymer Materials, 2020, 2(7): 2578-2585. |
| [12] | Woch J, Iłowska J, Hordyjewicz-Baran Z, et al. Aqueous solution behaviour and solubilisation properties of octadecyl cationic Gemini surfactants and their comparison with their amide Gemini analogues[J]. Soft Matter, 2018, 14(5): 754-764. |
| [13] | Zhou M, Zhou L, Guo X. Synthesis of sulfobetaine-type zwitterionic Gemini surfactants (EAPMAC) and their oilfield application properties[J]. Journal of Surfactants and Detergents, 2019, 22(1): 23-32. |
| [14] | Kumar D, Rub M A. Catalytic influence of 16-s-16 Gemini surfactants on the rate constant of histidine and ninhydrin[J]. Royal Society Open Science, 2020, 7(2): 191648. |
| [15] | Hooshyar H, Sadeghi R. Influence of sodium salts on the micellization and interfacial behavior of cationic surfactant dodecyltrimethylammonium bromide in aqueous solution[J]. Journal of Chemical & Engineering Data, 2015, 60(4): 983-992. |
| [16] | Gharbi A, Badache L, Berriche L, et al. Synthesis and characterization both micellization and thermodynamic parameter of cationic surfactant mixture derived from vegetable oil[J]. Journal of the Iranian Chemical Society, 2021, 18(4): 921-932. |
| [17] | Li L H, Su Q R, Xu K, et al. Self-assembly of cinnamic acid-modified chitosan surfactants: synthesis, characterization, and applications in emulsification[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(19): 7541-7552. |
| [18] | Deng M L, Wei G, Rao W, et al. Heat-resistant adhesion performance of acrylic latex PSAs using reactive surfactants and a novel methacrylate with ethylene-urea heterocyclic group[J]. Journal of Polymer Research, 2025, 32(4): 143. |
| [19] | Wang G, Liu L F, He D D, et al. Cationic-anionic surfactant mixtures based on Gemini surfactant as a candidate for enhanced oil recovery[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677: 132297. |
| [20] | Yang J E, Huang H J, Zheng J G, et al. Effect of head group of surfactant on the self-assembly structures and aggregation transitions in a mixture of cationic surfactant and anionic surfactant-like ionic liquid[J]. Journal of Molecular Liquids, 2020, 308: 112995. |
| [21] | Staniscia F, Guzman H V, Kanduč M. Tuning contact angles of aqueous droplets on hydrophilic and hydrophobic surfaces by surfactants[J]. The Journal of Physical Chemistry. B, 2022, 126(17): 3374-3384. |
| [22] | Gan C S, Li H, Cai K L. Novel sugar-based Gemini surfactants and their surface properties[J]. Journal of Surfactants and Detergents, 2018, 21(6): 859-866. |
| [23] | Pal N, Hoteit H, Mandal A. Structural aspects, mechanisms and emerging prospects of Gemini surfactant-based alternative enhanced oil recovery technology: a review[J]. Journal of Molecular Liquids, 2021, 339: 116811. |
| [24] | Mpelwa M, Tang S F, Jin L J, et al. New sulfonate Gemini surfactants: synthesis and evaluation for enhanced oil recovery applications[J]. Journal of Dispersion Science and Technology, 2020, 41(14): 2091-2099. |
| [25] | Hassan M, Al-Hazmi S M, Alhagri I A, et al. Micellar catalysis of chemical reactions by mixed surfactant systems and Gemini surfactants[J]. Asian Journal of Chemistry, 2021, 33(7): 1471-1480. |
| [26] | Luo J H, Huang Z J, Liu L Q, et al. Recent advances in separation applications of polymerized high internal phase emulsions[J]. Journal of Separation Science, 2021, 44(1): 169-187. |
| [27] | Li C H, Weng S Q, Jin M, et al. Dendritic macrosurfactant assembly for physical functionalization of HIPE-templated polymers[J]. Polymers, 2020, 12(4): 779. |
| [28] | Yan T T, Song D B, Pei D X, et al. Widely adaptable oil-in-water gel emulsions stabilized by an amphiphilic hydrogelator derived from dehydroabietic acid[J]. Angewandte Chemie International Edition, 2020, 59(2): 637-641. |
| [29] | Sarkar N, Sahoo G, Swain S K. Reduced graphene oxide decorated superporous polyacrylamide based interpenetrating network hydrogel as dye adsorbent[J]. Materials Chemistry and Physics, 2020, 250: 123022. |
| [30] | Duan F Z, Zhu Y F, Lu Y S, et al. Fabrication porous adsorbents templated from aqueous foams using astragalus membranaceus and attapulgite as stabilizer for efficient removal of cationic dyes[J]. Journal of Environmental Sciences, 2023, 127: 855-865. |
| [31] | Vallejo-Macías M T, Recio-Colmenares C L, Pelayo-Vázquez J B, et al. Macroporous polyacrylamide γ-Fe2O3 nanoparticle composites as methylene blue dye adsorbents[J]. ACS Applied Nano Materials, 2020, 3(6): 5794-5806. |
| [1] | 周玉祥, 林巧力. 基于振荡座滴测定液滴表面张力的方法[J]. 化工学报, 2025, 76(8): 4185-4193. |
| [2] | 陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118. |
| [3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
| [4] | 朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092. |
| [5] | 朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
| [6] | 宇高义郎, 许竞莹, 王国卓, 陈志豪. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
| [7] | 李锦锦, 吴优, 周寅宁, 罗正鸿. 两亲嵌段共聚物基高内相乳液模板的制备与应用研究进展[J]. 化工学报, 2021, 72(11): 5443-5454. |
| [8] | 刘雷, 张粤, 李霞, 雷惊雷, 李凌杰. 铝合金表面耐久性超疏水防护膜的制备与表征[J]. 化工学报, 2020, 71(10): 4750-4759. |
| [9] | 周威, 陈立, 杜京城, 谭陆西, 董立春, 周才龙. 仿生雾水收集材料:从基础研究到性能提升策略[J]. 化工学报, 2020, 71(10): 4532-4552. |
| [10] | 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301. |
| [11] | 黄志甲, 罗良, 柯瑞, 卓飞飞, 钟亮. 亲水无纺布PVC复合规整填料除湿性能实验[J]. 化工学报, 2019, 70(3): 913-921. |
| [12] | 李云, 胡浩威. 润湿性对纳米多孔陶瓷膜输运性能的影响[J]. 化工学报, 2017, 68(9): 3474-3481. |
| [13] | 柴永志, 张伟, 李亚, 赵亚东. 非均匀润湿性微通道表面池沸腾换热特性[J]. 化工学报, 2017, 68(5): 1852-1859. |
| [14] | 常程, 姬忠礼, 黄金斌, 詹爽, 李兰洁. 气液过滤过程中液滴二次夹带现象分析[J]. 化工学报, 2015, 66(4): 1344-1352. |
| [15] | 袁腾, 陈卓, 周显宏, 涂伟萍, 胡剑青, 王锋. 基于超亲水超疏油原理的网膜及其在油水分离中的应用[J]. 化工学报, 2014, 65(6): 1943-1951. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号