化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1920-1928.DOI: 10.11949/0438-1157.20240081
张文焱1(), 刘浩1, 宋伟龙1, 赵频1(
), 王新华1,2
收稿日期:
2024-01-07
修回日期:
2024-02-04
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
赵频
作者简介:
张文焱(1998—),男,硕士研究生,1162055245@qq.com
基金资助:
Wenyan ZHANG1(), Hao LIU1, Weilong SONG1, Pin ZHAO1(
), Xinhua WANG1,2
Received:
2024-01-07
Revised:
2024-02-04
Online:
2024-05-25
Published:
2024-06-25
Contact:
Pin ZHAO
摘要:
以锆基金属-有机骨架材料(MOFs) UiO-66作为研究对象,制备了三种不同粒径的UiO-66纳米颗粒,并将其混掺到薄层复合膜(TFC)的聚酰胺(PA)层内,研究了UiO-66纳米颗粒的粒径对薄层复合纳米正渗透(TFN-FO)膜性能的影响。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、水接触角(WCA)测量仪、X射线光电子能谱仪(XPS)等表征手段,探究了TFN-FO膜的性质变化。结果表明,减小UiO-66的粒径不会影响TFN-FO膜的高亲水性,并且随着UiO-66粒径的减小,TFN-FO膜的粗糙度降低、交联度升高。通过以去离子水和2 mol/L氯化钠溶液作为进料液和汲取液的实验室自制的正渗透系统对膜性能进行评价,发现混掺小粒径(50 nm) UiO-66的TFN-FO膜可以在保持较低反向盐通量的同时实现35%的水通量提升。有机污染实验表明,TFN-FO膜具有良好的抗污染性能。
中图分类号:
张文焱, 刘浩, 宋伟龙, 赵频, 王新华. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928.
Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes[J]. CIESC Journal, 2024, 75(5): 1920-1928.
膜 | C含量 | N含量 | O含量 | Zr含量 | O/N原子比 | O/N原子比① | 交联度/% |
---|---|---|---|---|---|---|---|
TFC | 74.45 | 10.80 | 14.71 | 0 | 1.36 | 1.36 | 54 |
TFN-50 | 73.19 | 10.08 | 16.28 | 0.42 | 1.60 | 1.39 | 51 |
TFN-100 | 72.72 | 10.15 | 16.68 | 0.40 | 1.64 | 1.43 | 47 |
TFN-150 | 73.23 | 9.80 | 16.35 | 0.35 | 1.70 | 1.47 | 43 |
表1 TFC膜和TFN膜的XPS分析
Table 1 XPS of TFC and TFN membranes
膜 | C含量 | N含量 | O含量 | Zr含量 | O/N原子比 | O/N原子比① | 交联度/% |
---|---|---|---|---|---|---|---|
TFC | 74.45 | 10.80 | 14.71 | 0 | 1.36 | 1.36 | 54 |
TFN-50 | 73.19 | 10.08 | 16.28 | 0.42 | 1.60 | 1.39 | 51 |
TFN-100 | 72.72 | 10.15 | 16.68 | 0.40 | 1.64 | 1.43 | 47 |
TFN-150 | 73.23 | 9.80 | 16.35 | 0.35 | 1.70 | 1.47 | 43 |
1 | Cath T, Childress A, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87. |
2 | Suwaileh W, Pathak N, Shon H, et al. Forward osmosis membranes and processes: a comprehensive review of research trends and future outlook[J]. Desalination, 2020, 485: 114455. |
3 | Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: a review[J]. Water Research, 2014, 58: 179-197. |
4 | 齐亚兵, 张思敬, 杨清翠. 正渗透水处理技术研究现状及进展[J]. 现代化工, 2021, 41(8): 52-57. |
Qi Y B, Zhang S J, Yang Q C. Research status and progress on forward osmosis water treatment technologies[J]. Modern Chemical Industry, 2021, 41(8): 52-57. | |
5 | Chekli L, Phuntsho S, Kim J E, et al. A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects[J]. Journal of Membrane Science, 2016, 497: 430-449. |
6 | Wang J L, Liu X J. Forward osmosis technology for water treatment: recent advances and future perspectives[J]. Journal of Cleaner Production, 2021, 280: 124354. |
7 | Ibrar I, Altaee A, Zhou J L, et al. Challenges and potentials of forward osmosis process in the treatment of wastewater[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13): 1339-1383. |
8 | Alihemati Z, Hashemifard S A, Matsuura T, et al. Current status and challenges of fabricating thin film composite forward osmosis membrane: a comprehensive roadmap[J]. Desalination, 2020, 491: 114557. |
9 | 杨碧野, 姚之侃, 林赛赛, 等. 聚酰胺薄层复合膜性能劣化机理及表面改性策略[J]. 膜科学与技术, 2020, 40(3): 161-167. |
Yang B Y, Yao Z K, Lin S S, et al. Deterioration mechanism and modification strategie of polyamide thin film composite membranes[J]. Membrane Science and Technology, 2020, 40(3): 161-167. | |
10 | Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches[J]. Water Research, 2015, 80: 306-324. |
11 | 孙艳, 刘士涛, 邓尚, 等. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460. |
Sun Y, Liu S T, Deng S, et al. Study on TFN membrane loaded with carboxylated spherical mesoporous nanoparticles[J]. CIESC Journal, 2020, 71(S1): 454-460. | |
12 | Al M A. Important approaches to enhance reverse osmosis (RO) thin film composite (TFC) membranes performance[J]. Membranes, 2018, 8(3): 68. |
13 | Jeong B H, Hoek E M V, Yan Y S, et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294(1/2): 1-7. |
14 | Ma X H, Guo H, Yang Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570/571: 139-145. |
15 | Yuan S S, Li X, Zhu J Y, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
16 | Zhao D L, Feng F, Shen L, et al. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation[J]. Chemical Engineering Journal, 2023, 454: 140447. |
17 | Liu X G, Shan Y Y, Zhang S T, et al. Application of metal organic framework in wastewater treatment[J]. Green Energy & Environment, 2023, 8(3): 698-721. |
18 | Xiao F, Hu X Y, Chen Y B, et al. Porous Zr-based metal-organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47390-47403. |
19 | Wu L K, Xu Z L, Tong M, et al. Dissecting the role of nanomaterials on permeation enhancement of the thin-film nanocomposite membrane: ZIF-8 as an example[J]. Journal of Membrane Science, 2023, 673: 121494. |
20 | Samsami S, Sarrafzadeh M H, Ahmadi A. Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement[J]. Chemical Engineering Journal, 2022, 431: 133469. |
21 | Ma D C, Peh S B, Han G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7523-7534. |
22 | Basu S, Balakrishnan M. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams[J]. Separation and Purification Technology, 2017, 179: 118-125. |
23 | Bayrami A, Bagherzadeh M, Navi H, et al. Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance[J]. Desalination, 2022, 521: 115386. |
24 | Liao Z P, Fang X F, Xie J, et al. Hydrophilic hollow nanocube-functionalized thin film nanocomposite membrane with enhanced nanofiltration performance[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5344-5352. |
25 | Bonnett B L, Smith E D, De La Garza M, et al. PCN-222 metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15765-15773. |
26 | Ren J W, Langmi H W, North B C, et al. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2014, 39(2): 890-895. |
27 | Lu Y, Wang R Y, Zhu Y Z, et al. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2019891118. |
28 | Seoane B, Castellanos S, Dikhtiarenko A, et al. Multi-scale crystal engineering of metal organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307: 147-187. |
29 | Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
30 | Huang H, Qu X Y, Dong H, et al. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane[J]. RSC Advances, 2013, 3(22): 8203-8207. |
31 | Hotze E M, Phenrat T, Lowry G V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment[J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924. |
32 | Knebel A, Friebe S, Bigall N C, et al. Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7536-7544. |
33 | Duan J T, Pan Y C, Pacheco F, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. Journal of Membrane Science, 2015, 476: 303-310. |
34 | Wang F H, Zheng T, Xiong R H, et al. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: effect of particle size and dispersion in selective layer[J]. Chemosphere, 2019, 233: 524-531. |
35 | Lind M L, Ghosh A K, Jawor A, et al. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes[J]. Langmuir, 2009, 25(17): 10139-10145. |
36 | Kim E S, Deng B L. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. Journal of Membrane Science, 2011, 375(1/2): 46-54. |
37 | Perez E V, Balkus K J, Ferraris J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations[J]. Journal of Membrane Science, 2009, 328(1/2): 165-173. |
38 | 周倩, 赵频, 刘浩, 等. 氧化石墨烯表面改性正渗透膜制备及其抗污染性能[J]. 膜科学与技术, 2022, 42(4): 81-88, 95. |
Zhou Q, Zhao P, Liu H, et al. Thin-film composite forward osmosis membranes modified by graphene oxide surface grafting for enhancing the anti-fouling capacity[J]. Membrane Science and Technology, 2022, 42(4): 81-88, 95. |
[1] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[2] | 张子佳, 仇昕月, 孙翔, 罗志斌, 罗海中, 贺高红, 阮雪华. 聚酰亚胺膜材料分子结构设计强化CO2渗透性研究进展[J]. 化工学报, 2024, 75(4): 1137-1152. |
[3] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[4] | 莫滨宇, 张雅馨, 刘国振, 刘公平, 金万勤. 面向一/二价离子分离的金属有机骨架膜研究进展[J]. 化工学报, 2024, 75(4): 1183-1197. |
[5] | 张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955. |
[6] | 谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986. |
[7] | 张昕锐, 陈雪梅. CNT/PVA@碳布膜的光电联合驱动界面蒸发性能研究[J]. 化工学报, 2024, 75(3): 1028-1039. |
[8] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
[9] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[10] | 陈宏, 江坤, 唐廷江, 黄易元, 池滨, 廖世军. 大功率质子交换膜燃料电池电堆膜电极一致性研究[J]. 化工学报, 2024, 75(2): 637-646. |
[11] | 王尤佳, 赵亮, 高金森, 徐春明. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32. |
[12] | 朱娇, 栾丽萍, 从深震, 刘新磊. 氢气分离有机膜[J]. 化工学报, 2024, 75(1): 138-158. |
[13] | 赵文琪, 邓燕君, 朱春英, 付涛涛, 马友光. 纳米粒子稳定的Pickering乳液及其液滴聚并动力学研究进展[J]. 化工学报, 2024, 75(1): 33-46. |
[14] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[15] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||