化工学报 ›› 2025, Vol. 76 ›› Issue (2): 612-622.DOI: 10.11949/0438-1157.20240679
• 流体力学与传递现象 • 上一篇
收稿日期:
2024-06-18
修回日期:
2024-09-17
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
徐强
作者简介:
黄云龙(2000—),男,硕士研究生,yunl_h@163.com
基金资助:
Yunlong HUANG1(), Jian XU2, Tong LIU2, Xintong YUAN1, Qiang XU1(
)
Received:
2024-06-18
Revised:
2024-09-17
Online:
2025-03-25
Published:
2025-03-10
Contact:
Qiang XU
摘要:
明确水平井温度分布规律对于利用井温数据解释天然气产量至关重要。利用水平段多相参数测试实验装置,发现水平段温度分布特征与孔眼进气量、含水率以及相邻孔眼的温降密切相关,并分别建立了基于温差的流量及含水率预测关联式。实验结果表明,气体流入量越大,孔眼下方温度越低,而含水率增大会减弱气体通过孔眼时的温降,气体的节流温降效应在体积含水率达9%时消失。当多孔同时进气时,下游温降受上游温降影响显著,并随相邻孔眼间进气比增大而呈线性增强趋势,说明在纯产气阶段,利用温度数据计算射孔段产量时需要考虑射孔段间的温降干扰。但当下游孔眼流入气液两相时,随含水率的升高,上游温降对下游温降的影响逐渐降低。
中图分类号:
黄云龙, 许剑, 刘通, 元昕彤, 徐强. 气藏水平井温度分布特征及流量测试实验研究[J]. 化工学报, 2025, 76(2): 612-622.
Yunlong HUANG, Jian XU, Tong LIU, Xintong YUAN, Qiang XU. Experimental study on temperature distribution characteristics and flow measurement of horizontal wells in gas reservoir[J]. CIESC Journal, 2025, 76(2): 612-622.
测量参数 | 测量范围 | 测量精度 | 最大误差 | 最大不确定度 |
---|---|---|---|---|
压力 | 0~20 MPa | ±0.075% | 0.015 | 7.5% |
压差 | 0~2 MPa | ±0.075% | 0.002 | 0.2% |
温度 | 0~200℃ | ±0.25% | 0.5 | 12.5% |
气相流量 | 0~400 kg/h | ±0.5% | 1.8 | 20% |
液相流量 | 0~0.6 m3/h | ±1% | 0.002 | 12% |
表1 实验测量参数误差及不确定度
Table 1 Experimental measurement parameter errors and uncertainties
测量参数 | 测量范围 | 测量精度 | 最大误差 | 最大不确定度 |
---|---|---|---|---|
压力 | 0~20 MPa | ±0.075% | 0.015 | 7.5% |
压差 | 0~2 MPa | ±0.075% | 0.002 | 0.2% |
温度 | 0~200℃ | ±0.25% | 0.5 | 12.5% |
气相流量 | 0~400 kg/h | ±0.5% | 1.8 | 20% |
液相流量 | 0~0.6 m3/h | ±1% | 0.002 | 12% |
图3 E1时水平管段沿程温度、温差分布随qg1变化规律
Fig.3 Variations of temperature distribution and differential temperature distribution along the horizontal pipe with qg1 in E1
图5 E2时水平管段沿程温度、温差分布随qw变化规律
Fig.5 Variations of temperature distribution and differential temperature distribution along the horizontal pipe with qw in E2
图10 引入相邻孔眼间流量差异后上游温差与下游温差之间的关系
Fig.10 The relationship between upstream differential temperature and downstream differential temperature after the flow difference between adjacent perforations is introduced
1 | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
Jia C Z, Zheng M, Zhang Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. | |
2 | 王国勇. 苏里格气田水平井整体开发技术优势与条件制约: 以苏53区块为例[J]. 特种油气藏, 2012, 19(1): 62-65, 138. |
Wang G Y. Technical advantages and limitations of integrated development of Sulige gas field with horizontal wells: a case study with Block Su53[J]. Special Oil & Gas Reservoirs, 2012, 19(1): 62-65, 138. | |
3 | 王永辉, 卢拥军, 李永平, 等. 非常规储层压裂改造技术进展及应用[J]. 石油学报, 2012, 33(S1): 149-158. |
Wang Y H, Lu Y J, Li Y P, et al. Progress and application of fracturing reconstruction technology in unconventional reservoirs[J]. Acta Petrolei Sinica, 2012, 33(S1): 149-158. | |
4 | 吴奇, 胥云, 刘玉章, 等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺, 2011, 33(2): 1-7. |
Wu Q, Xu Y, Liu Y Z, et al. The current situation of stimulated reservoir volume for shale in U.S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011, 33(2): 1-7. | |
5 | Shen W J, Ma T R, Zuo L, et al. Advances and prospects of supercritical CO2 for shale gas extraction and geological sequestration in gas shale reservoirs[J]. Energy & Fuels, 2024, 38(2): 789-805. |
6 | 朱世琰. 基于分布式光纤温度测试的水平井产出剖面解释理论研究[D]. 成都: 西南石油大学, 2016. |
Zhu S Y. Theoretical study on horizontal well production profile interpretation based on distributed optical fiber temperature measurement[D]. Chengdu: Southwest Petroleum University, 2016. | |
7 | 郭海敏, 刘军锋, 戴家才, 等. 水平井产出剖面解释模型及图版[J]. 中国科学(D辑: 地球科学), 2008, 38(S2): 146-150. |
Guo H M, Liu J F, Dai J C, et al. Interpretation model and chart of horizontal well production profile[J]. Scientia Sinica (Terrae), 2008, 38(S2): 146-150. | |
8 | 刘兴斌, 胡金海, 周家强, 等. 电导式相关流量测井仪在产出剖面测井中的应用[J]. 测井技术, 2004, 28(2): 138-140, 144. |
Liu X B, Hu J H, Zhou J Q, et al. Applicaion of conductance correlaion flowmeter logging tool in production profile measurements[J]. Well Logging Technology, 2004, 28(2): 138-140, 144. | |
9 | 韩易龙, 吴迪, 王海, 等. 水平井生产测井技术应用[J]. 测井技术, 2003, 27(4): 320-324, 355. |
Han Y L, Wu D, Wang H, et al. Application of horizontal well production profile logging technology[J]. Well Logging Technology, 2003, 27(4): 320-324, 355. | |
10 | 崔文昊, 高榕, 常莉静, 等. 井下存储式浮子流量计在水平井产液剖面测试中的应用[J]. 测井技术, 2017, 41(4): 458-461. |
Cui W H, Gao R, Chang L J, et al. Application of downhole memory float flowmeter to production fluid profile logging in horizontal wells[J]. Well Logging Technology, 2017, 41(4): 458-461. | |
11 | 吴世旗, 钟兴福, 刘兴斌, 等. 水平井产出剖面测井技术及应用[J]. 油气井测试, 2005, 14(2): 57-59, 77. |
Wu S Q, Zhong X F, Liu X B, et al. Tech of production profile logging in horizontal well and its application[J]. Well Testing, 2005, 14(2): 57-59, 77. | |
12 | 冯晓炜, 赵毅, 杨鹏, 等. 分布式光纤温度监测技术在压裂水平井产剖解释中的应用[J]. 油气藏评价与开发, 2021, 11(4): 542-549. |
Feng X W, Zhao Y, Yang P, et al. Application of distributed optical fiber temperature monitoring technology in production and profile interpretation of fractured horizontal wells[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 542-549. | |
13 | 罗懿, 符伟兵, 樊丽丽. 基于温度压力的产出剖面测试方法研究与应用[J]. 江汉石油职工大学学报, 2020, 33(6): 44-46. |
Luo Y, Fu W B, Fan L L. Study and application of method for temperature- and pressure-based test of production profile[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2020, 33(6): 44-46. | |
14 | Zhang S, Zhu D, Hill A D. Flow profile determination from inversion of distributed temperature measurements[C]//SPE Annual Technical Conference and Exhibition. Calgary, Alberta, Canada. SPE, 2019: D031S048R002. |
15 | Ramey H J. Wellbore heat transmission[J]. Journal of petroleum Technology, 1962, 14(4): 427-435. |
16 | Yoshioka K, Zhu D, Hill A D, et al. Interpretation of temperature and pressure profiles measured in multilateral wells equipped with intelligent completions(SPE94097)[C]//67th EAGE Conference & Exhibition. Madrid: European Association of Geoscientists & Engineers, 2005. |
17 | Yoshioka K, Zhu D, Hill A, et al. A comprehensive model of temperature behavior in a horizontal well[C]//Proceedings of SPE Annual Technical Conference and Exhibition. Dallas: Society of Petroleum Engineers, 2005. |
18 | Muradov K, Davies D. Novel analytical methods of temperature interpretation in horizontal wells[J]. SPE Journal, 2011, 16(3): 637-647. |
19 | Li Z Y, Zhu D. Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for waterdrive reservoir[J]. SPE Production & Operations, 2010, 25(3): 296-304. |
20 | Luo H W, Li H T, Zhou X J, et al. Modeling temperature behavior of multistage fractured horizontal well with two-phase flow in low-permeability gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1187-1209. |
21 | 李海涛, 罗红文, 向雨行, 等. DTS/DAS技术在水平井压裂监测中的应用现状与展望[J]. 新疆石油天然气, 2021, 17(4): 62-73. |
Li H T, Luo H W, Xiang Y X, et al. The application status and prospect of DTS/DAS in fracturing monitoring of horizontal wells[J]. Xinjiang Oil & Gas, 2021, 17(4): 62-73. | |
22 | Nowak T J. The estimation of water injection profiles from temperature surveys[J]. Journal of Petroleum Technology, 1953, 5(8): 203-212. |
23 | Yoshioka K, Zhu D, Hill A D, et al. Prediction of temperature changes caused by water or gas entry into a horizontal well[J]. SPE Production & Operations, 2007, 22(4): 425-433. |
24 | Luo H W, Li H T, Li Y H, et al. Investigation of temperature behavior for multi-fractured horizontal well in low-permeability gas reservoir[J]. International Journal of Heat and Mass Transfer, 2018, 127: 375-395. |
25 | 罗红文, 李海涛, 蒋贝贝, 等. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法[J]. 天然气地球科学, 2019, 30(11): 1639-1645. |
Luo H W, Li H T, Jiang B B, et al. A novel method to interpret production profiles of fractured horizontal well in low-permeability gas reservoir by inversing DTS data[J]. Natural Gas Geoscience, 2019, 30(11): 1639-1645. | |
26 | Hashish R G, Zeidouni M. Injection profiling in horizontal wells using temperature warmback analysis[J]. Computational Geosciences, 2021, 25(1): 215-232. |
27 | Song W G, Jia N, Jiang Q Q. An interpretation model for the production profile on the same angle of a horizontal well trajectory[J]. Frontiers in Energy Research, 2020, 8: 203. |
28 | Crump J B, Conway M W. Effects of perforation-entry friction on bottomhole treating analysis[J]. Journal of Petroleum Technology, 1988, 40(8): 1041-1048. |
29 | Granger G. A series of enthalpy-entropy charts for natural gases[J]. Transactions of the AIME, 1945, 160(1): 65-76. |
30 | 李颖川, 胡顺渠, 郭春秋. 天然气节流温降机理模型[J]. 天然气工业, 2003, 23(3): 70-72, 5. |
Li Y C, Hu S Q, Guo C Q. Model of temperature drop mechanism when gas flowing through chokes[J]. Natural Gas Industry, 2003, 23(3): 70-72, 5. | |
31 | 毛伟, 张立德. 焦耳-汤姆逊系数计算方法研究[J]. 特种油气藏, 2002, 9(5): 44-46, 107. |
Mao W, Zhang L D. A method study for calculating Joule-Thompson coefficient[J]. Special Oil & Gas Reservoirs, 2002, 9(5): 44-46, 107. |
[1] | 汪涵, 朱春英, 马友光, 付涛涛. 入口压力及系统压差对气体输送系统流量的影响[J]. 化工学报, 2025, 76(2): 596-611. |
[2] | 戴晓宇, 徐强, 杨晨宇, 苏筱斌, 郭烈锦. 多级混流式混输泵气液两相增压特性[J]. 化工学报, 2025, 76(2): 554-563. |
[3] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
[4] | 蒲黎明, 汪贵, 郑春来, 王科, 向腾龙, 王治红. 混合制冷级联天然气液化工艺优化及分析[J]. 化工学报, 2024, 75(S1): 267-275. |
[5] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[6] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[7] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
[8] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[9] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[10] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[11] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[12] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[13] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[14] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[15] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||