• •
收稿日期:2025-03-12
修回日期:2025-04-30
出版日期:2025-06-23
通讯作者:
马学虎
作者简介:汪嘉辉(1999—),男,硕士研究生,wjhdlut2022@163.com
基金资助:
Jiahui WANG1(
), Xu LIU1, Nan ZHANG1, Yi ZHENG2, Xuehu MA1(
)
Received:2025-03-12
Revised:2025-04-30
Online:2025-06-23
Contact:
Xuehu MA
摘要:
随着工业的发展,液化石油气储存的安全问题越来越重要。油气球形储罐泄漏以沸腾液体膨胀蒸汽爆炸(BLEVE)为主,严重影响着工作人员的安全。因此研究不同曲率曲面沸腾过程,快速降低传热系数(HTC)十分关键。研究了四种不同曲率曲面对于沸腾的影响,并对气泡的传热特性和动力学进行讨论。研究结果表明:除了曲率为47-1 mm-1的表面,其余表面传热系数随着曲率的增大不断增大。相较于平面沸腾,曲面沸腾实现了气泡的定向输运,加快了表面气泡的更新速率,从而提高了沸腾过程中的临界热通量(CHF)和传热系数,其中曲率为47-1 mm-1的曲面圆心角0°处CHF最高,为138.8 W/cm2,相较于光滑平表面升高了26.2 %,其对应的表面温度为111.4 ℃。
中图分类号:
汪嘉辉, 刘旭, 张楠, 郑毅, 马学虎. 弯曲表面核沸腾气泡特性与传热研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250245.
Jiahui WANG, Xu LIU, Nan ZHANG, Yi ZHENG, Xuehu MA. Research on the characteristics and heat transfer of nucleate boiling bubbles on curved surfaces[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250245.
图9 不同曲率曲面气泡滑移距离和不同曲率曲面气泡脱离时间
Fig.9 Bubble slip distance on surfaces with different curvatures and bubble detachment time on surfaces with different curvatures
| 1 | CCPS. Guidelines for evaluating the characteristics of vapor cloud explosions, Flash Fires and BLEVE's, Center for Chemical Process Safety[M]. New York: American Institute of Chemical Engineers, 1994: 1-402. |
| 2 | Walls W L. The BLEVE-part 1[J]. Fire Command, 1979, 17: 35-37. |
| 3 | Ibrahim Mohamed Shaluf. An overview on BLEVE[J]. Disaster Prevention and Management, 2007, 16(5): 740-754. |
| 4 | CCPS. Guidelines for Consequence Analysis of Chemical Releases[M]. New York: American Institute of Chemical Engineers, 1999: 1-346. |
| 5 | Birk A M, Cunningham M H. The boiling liquid expanding vapor explosion[J]. Journal of Loss Prevention in the Process Industries, 1994, 7(6): 474-480. |
| 6 | Van den Berg A C, Van der Voort M M, Weerheijm J, et al. BLEVE blast by expansion-controlled evaporation[J]. Process Safety Progress, 2006, 25(1): 44-51. |
| 7 | Bourdon B, Di Marco P, Rioboo R, et al. Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces[J]. International Communications in Heat and Mass Transfer, 2013, 45: 11-15. |
| 8 | Phan H T, Caney N, Marty P, et al. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5459-5471. |
| 9 | Bourdon B, Bertrand E, Di Marco P, et al. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces[J]. Advances in Colloid and Interface Science, 2015, 221: 34-40. |
| 10 | Takata Y, Hidaka S, Kohno M. Effect of surface wettability on pool boiling: enhancement by hydrophobic coating[J]. International Journal of Air-Conditioning and Refrigeration, 2012, 20(1): 1150003. |
| 11 | Shi J, Jia X, Feng D Y, et al. Wettability effect on pool boiling heat transfer using a multiscale copper foam surface[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118726. |
| 12 | Jung J Y, Kwak H Y. Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness [J]. International Journal of Heat and Mass Transfer, 2006, 49(23/24): 4543-4551. |
| 13 | Kim J, Jun S, Laksnarain R, et al. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J]. International Journal of Heat and Mass Transfer, 2016, 101: 992-1002. |
| 14 | Honda H, Takamastu H, Wei J J. Enhanced Boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness[J]. Journal of Heat Transfer, 2002, 124(2): 383-390. |
| 15 | O'Hanley H, Coyle C, Buongiorno J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103(2): 024102. |
| 16 | Zou Y, Li J Y, Li T Y, et al. Experimental study of the effect of surface roughness on the heat transfer characteristics of subcooled flow boiling in a narrow rectangular channel[J]. Annals of Nuclear Energy, 2025, 210: 110842. |
| 17 | Sun Y L, Tang Y, Zhang S W, et al. A review on fabrication and pool boiling enhancement of three-dimensional complex structures[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112437. |
| 18 | Liu Y, Tang J Q, Li L X, et al. Design of Cassie-wetting nucleation sites in pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 25-33. |
| 19 | 纪献兵, 王野, 代超, 等. 乳突状多尺度结构表面的池沸腾传热特性[J]. 高校化学工程学报,2018, 32(2): 312-318. |
| Ji X B, Wang Y, Dai C, et al. Pool boiling heat transfer characteristics on mastoid surface with multiscale structures[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(2): 312-318. | |
| 20 | Gouda R K, Pathak M, Khan M K. Pool boiling heat transfer enhancement with segmented finned microchannels structured surface[J]. International Journal of Heat and Mass Transfer, 2018, 127: 39-50. |
| 21 | 柴永志, 张伟, 赵亚东, 等. 润湿性对微纳复合结构表面池沸腾换热的影响[J]. 高校化学工程学报, 2017, 31(4): 984-990. |
| Chai Y Z, Zhang W, Zhao Y D, et al. Effects of wettability on pool boiling heat transfer of micro/nano-composite surface[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(4): 984-990. | |
| 22 | Choi H, Aziz F, Shin Y, et al. Effects of super-hydrophilicity and orientation of heater surface on bubble behavior and the critical heat flux in pool boiling[J]. Annals of Nuclear Energy, 2023, 186: 109762. |
| 23 | Xie S Z, Jiang M N, Kong H J, et al. An experimental investigation on the pool boiling of multi-orientated hierarchical structured surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120595. |
| 24 | Ferng Y M, Tseng Y L. Investigating effects of heating orientations on boiling heat transfer and bubble dynamics for pool boiling on downward facing heating surface[J]. Nuclear Engineering and Design, 2023, 406: 112230. |
| 25 | Li Q, Kang Q J, Francois M M, et al. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability[J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796. |
| 26 | Jo H, Ahn H S, Kang S, et al. A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5643-5652. |
| 27 | Ahn H S, Lee C, Kim H, et al. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface[J]. Nuclear Engineering and Design, 2010, 240(10): 3350-3360. |
| 28 | Hui L F, Liu M Y, Cai Y W, et al. Fouling resistance on chemically etched hydrophobic surfaces in nucleate pool boiling[J]. Chemical Engineering & Technology, 2015, 38(3): 416-422. |
| 29 | Rohsenow W M. A method of correlating heat-transfer data for surface boiling of liquids[J]. Journal of Fluids Engineering, 1952, 74(6): 969-975. |
| [1] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [2] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [3] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [4] | 彭德其, 刘奎霖, 武洋, 俞天兰, 谭卓伟, 吴淑英, 陈莹, 唐明成, 彭建国. 振动往复螺旋强化传热性能及结晶垢微观形貌分析研究[J]. 化工学报, 2025, 76(4): 1559-1568. |
| [5] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [6] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [7] | 孙睿, 王军锋, 许浩洁, 李步发, 徐雅弦. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421. |
| [8] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [9] | 刘润健, 林刚, 张玲, 徐栋, 李明, 韩路长. 考虑气泡表面变形影响的靠近-减薄过程耦合模型[J]. 化工学报, 2025, 76(4): 1504-1512. |
| [10] | 张忠州, 李怡霏, 陈双, 强军锋, 刘育红. 环氧基倍半硅氧烷修饰的联苯酚醛改性热塑性酚醛树脂性能[J]. 化工学报, 2025, 76(4): 1809-1819. |
| [11] | 马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应与传递过程强化方法研究进展[J]. 化工学报, 2025, 76(4): 1391-1403. |
| [12] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [13] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| [14] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [15] | 李科, 忻碧平, 文键. 液氢储罐中耦合蒸气冷却屏的连续变密度多层绝热的序列二次规划优化[J]. 化工学报, 2025, 76(3): 985-994. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号