化工学报

• •    

氨气气相还原法短程制备3.5价钒电解液

胡飞飞1,2(), 王程3, 王宝华4, 杜浩2,5, 祁健4, 王海旭6, 王少娜2()   

  1. 1.大连大学环境与化学工程学院,辽宁省 大连市 116020
    2.中国科学院过程工程研究所 战略金属资源绿色循环利用国家工程研究中心,北京 100190
    3.北京集成电路装备创新中心有限公司,北京 100176
    4.承德钒钛新材料有限公司,河北 承德 067102
    5.中国科学院大学国际学院,北京 100049
    6.河北河钢材料技术研究院有限公司,河北 石家庄 052160
  • 收稿日期:2025-04-17 修回日期:2025-06-12 出版日期:2025-07-08
  • 通讯作者: 王少娜
  • 作者简介:胡飞飞(2000—),女,硕士研究生,18247488929@163.com
  • 基金资助:
    国家重点研发计划项目(2024YFC3909504)

Preparation of 3.5-Valent Vanadium Electrolyte via Ammonia Gas-Phase Reduction

Feifei HU1,2(), Cheng WANG3, Baohua WANG4, Hao DU2,5, Jian QI4, Haixu WANG6, Shaona WANG2()   

  1. 1.School of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning 116020, China
    2.National Engineering Research Center for Green Recycling of Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3.Beijing Integrated Circuit Equipment Innovation Center Company Limited, Beijing 100176, China
    4.Chengde Vanadium and Titanium New Materials Company Limited, Chengde, Hebei 067102, China
    5.International School, University of Chinese Academy of Sciences, Beijing 100049, China
    6.Hebei HBIS Materials Technology Research Institute Company Limited, Shijiazhuang, Hebei 052160, China
  • Received:2025-04-17 Revised:2025-06-12 Online:2025-07-08
  • Contact: Shaona WANG

摘要:

针对3.5价钒电解液传统化学还原-电化学还原制备工艺流程长、化学残留难脱除等问题,本论文提出氨气气相还原偏钒酸铵、多钒酸铵及五氧化二钒等原料一步获得3.5价钒氧化物-钒氧化物直接酸溶制备3.5价钒电解液新工艺。热力学计算与实验结果均表明,氨气还原偏钒酸铵、多钒酸铵及五氧化二钒均遵循V5+→V6O13→VO2→V4O7→V2O3逐级还原原则,提高反应温度、氨气流量及延长反应时间均能促进五价钒的还原,在反应时间50min、氨气流量100mL/min条件下,在反应温度480 ℃、520 ℃和490 ℃分别还原偏钒酸铵、多钒酸铵和五氧化二钒,均可获得V浓度1.75mol/L以上、价态3.5±0.1的钒电解液,以偏钒酸铵和多钒酸铵为原料时电解液中钒浓度可达1.90mol/L以上;对三种原料还原后获得的电解液性能分析表明,以偏钒酸铵为原料导电性最优(离子电导率19.17S/m),分别较五氧化二钒(12.82S/m)和多钒酸铵(11.02S/m)体系提升了49.4%和73.9%。本论文提出的新工艺可避免3.5价钒电解液制备过程有机/化学还原剂残留,为全钒液流电池电解液制备技术的短流程发展提供了技术支撑。

关键词: 钒电解液, 氨气还原, 偏钒酸铵, 全钒液流电池, 多钒酸铵, 溶解度, 热力学性质

Abstract:

To address the issues of lengthy preparation process and difficult removal of chemical residues in traditional chemical reduction-electrochemical reduction methods for preparing 3.5-valent vanadium electrolyte, this study proposes an innovative process involving NH3 gas-phase reduction of NH4VO3, (NH4)2V6O16, and V2O5 precursors to directly obtain 3.5-valent vanadium oxides, followed by dissolution to prepare 3.5-valent vanadium electrolyte. Both thermodynamic calculations and experimental results demonstrate that the NH3 reduction of NH4VO3, (NH4)2V6O16, and V2O5 follows a stepwise reduction mechanism: V5+→V6O13→VO2→V4O7→V2O3. Enhanced vanadium reduction was achieved by increasing reaction temperature, NH3 flow rate, and prolonging reaction duration. Optimal conditions were established as: 50 min reaction time, 100 mL/min NH3 flow rate, and 480 ℃ for NH4VO3 reduction; 520 ℃ for (NH4)2V6O16 reduction; and 490 ℃ for V2O5 reduction. These conditions yielded electrolytes with vanadium concentrations exceeding 1.75M and valence states of 3.5±0.1. Notably, NH4VO3 and (NH4)2V6O16 precursors achieved vanadium concentrations above 1.90M. Electrolyte performance analysis revealed that the NH4VO3 derived system exhibited superior conductivity (ionic conductivity 19.17 S/m), representing 49.4% and 73.9% enhancements over V2O5 (12.83 S/m) and (NH4)2V6O16 (11.02 S/m) systems, respectively. This novel process eliminates organic/chemical reductant residues in electrolyte preparation, providing technical support for short process development of vanadium redox flow battery electrolyte production technologies.

Key words: vanadium electrolyte, ammonia reduction, NH4VO3, vanadium redox flow battery, (NH4)2V6O16, solubility, thermodynamic properties

中图分类号: