• •
胡飞飞1,2(
), 王程3, 王宝华4, 杜浩2,5, 祁健4, 王海旭6, 王少娜2(
)
收稿日期:2025-04-17
修回日期:2025-06-12
出版日期:2025-07-08
通讯作者:
王少娜
作者简介:胡飞飞(2000—),女,硕士研究生,18247488929@163.com
基金资助:
Feifei HU1,2(
), Cheng WANG3, Baohua WANG4, Hao DU2,5, Jian QI4, Haixu WANG6, Shaona WANG2(
)
Received:2025-04-17
Revised:2025-06-12
Online:2025-07-08
Contact:
Shaona WANG
摘要:
针对3.5价钒电解液传统化学还原-电化学还原制备工艺流程长、化学残留难脱除等问题,本论文提出氨气气相还原偏钒酸铵、多钒酸铵及五氧化二钒等原料一步获得3.5价钒氧化物-钒氧化物直接酸溶制备3.5价钒电解液新工艺。热力学计算与实验结果均表明,氨气还原偏钒酸铵、多钒酸铵及五氧化二钒均遵循V5+→V6O13→VO2→V4O7→V2O3逐级还原原则,提高反应温度、氨气流量及延长反应时间均能促进五价钒的还原,在反应时间50min、氨气流量100mL/min条件下,在反应温度480 ℃、520 ℃和490 ℃分别还原偏钒酸铵、多钒酸铵和五氧化二钒,均可获得V浓度1.75mol/L以上、价态3.5±0.1的钒电解液,以偏钒酸铵和多钒酸铵为原料时电解液中钒浓度可达1.90mol/L以上;对三种原料还原后获得的电解液性能分析表明,以偏钒酸铵为原料导电性最优(离子电导率19.17S/m),分别较五氧化二钒(12.82S/m)和多钒酸铵(11.02S/m)体系提升了49.4%和73.9%。本论文提出的新工艺可避免3.5价钒电解液制备过程有机/化学还原剂残留,为全钒液流电池电解液制备技术的短流程发展提供了技术支撑。
中图分类号:
胡飞飞, 王程, 王宝华, 杜浩, 祁健, 王海旭, 王少娜. 氨气气相还原法短程制备3.5价钒电解液[J]. 化工学报, DOI: 10.11949/0438-1157.20250410.
Feifei HU, Cheng WANG, Baohua WANG, Hao DU, Jian QI, Haixu WANG, Shaona WANG. Preparation of 3.5-Valent Vanadium Electrolyte via Ammonia Gas-Phase Reduction[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250410.
| 电对反应 | 标准电势差 | |
|---|---|---|
| 正极 | ||
| 负极 | ||
| 总反应 |
表1 钒电池正负极的反应[7]
Table 1 Reactions at the positive and negative electrodes in a vanadium battery
| 电对反应 | 标准电势差 | |
|---|---|---|
| 正极 | ||
| 负极 | ||
| 总反应 |
| 传统工艺 | 本研究新工艺 | |
|---|---|---|
| 原料 | 五氧化二钒(¥71,000~¥72,000/MT) | 偏钒酸铵(¥69,000/MT) 多钒酸铵(¥67,000/MT) |
| 工序 | 化学还原-电解-复配(V3+:V4+=1:1) | 气相还原-溶解 |
| 能耗结构 | 电解能耗高,单位投资高 1.89-3.15 KWh/Kg V(电解过程) | 焙烧热能为主,时间集中 0.21-0.29 KWh/Kg V(焙烧过程) |
| 优点 | 技术成熟 | 工序简化、能耗低 |
| 局限性 | 还原剂/副产物残留、能耗高、流程长 | 氨气高温处理需严格安全措施 |
表 2 3.5价钒电解液制备工艺对比
Table 2 Comparison of 3.5-valent vanadium electrolyte preparation processes
| 传统工艺 | 本研究新工艺 | |
|---|---|---|
| 原料 | 五氧化二钒(¥71,000~¥72,000/MT) | 偏钒酸铵(¥69,000/MT) 多钒酸铵(¥67,000/MT) |
| 工序 | 化学还原-电解-复配(V3+:V4+=1:1) | 气相还原-溶解 |
| 能耗结构 | 电解能耗高,单位投资高 1.89-3.15 KWh/Kg V(电解过程) | 焙烧热能为主,时间集中 0.21-0.29 KWh/Kg V(焙烧过程) |
| 优点 | 技术成熟 | 工序简化、能耗低 |
| 局限性 | 还原剂/副产物残留、能耗高、流程长 | 氨气高温处理需严格安全措施 |
图3 (a)氨气还原钒氧化物反应过程吉布斯自由能; 300~500 ℃范围内产物XPS谱图:(b)氨气还原偏钒酸铵;(c)氨气还原多钒酸铵;(d)氨气还原五氧化二钒
Fig.3 (a) The Gibbs free energy of the reduction of vanadium oxide by ammonia gas; XPS spectra of products obtained at 300-500 °C: (b) NH3 reduction of NH4VO3; (c) NH3 reduction of (NH4)2V6O16; (d) NH₃ reduction of V2O5
图4 反应温度及氨气流量对偏钒酸铵还原产物及电解液中钒价态的影响;(a)20 mL/min NH3;(b)60 mL/min NH3;(c)100 mL/min NH3;(d)钒电解液平均价态变化
Fig.4 The effects of reaction temperatures and NH3 flow rates on the phase structure of NH4VO3 reduction products and vanadium valence states in the electrolyte; (a) 20 mL/min; (b) 60 mL/min; (c) 100 mL/min NH3; (d) changes of average valence state
图5 反应时间对偏钒酸铵还原产物物相及电解液总钒浓度、价态的影响;(a)还原产物的XRD图谱;(b)钒电解液平均价态及浓度变化
Fig.5 The effects of reaction time on the phase structure of reduction products and vanadium valence states in the electrolyte;(a) XRD patterns of the reduction products; (b) changes in average valence and concentration
图6 反应温度对多钒酸铵还原产物物相结构的影响;(a)还原产物的XRD图谱;(b)还原产物的FT-IR图谱
Fig.6 The effects of reaction temperature on the phase structure of (NH4)2V6O16 reduction products; (a) XRD patterns of the reduction products; (b) FT-IR patterns of the reduction products
图7 反应温度对多钒酸铵还原产物所制电解液的影响;(a)钒电解液紫外-可见分光光度计分析;(b)钒电解液平均价态及浓度变化
Fig.7 The effects of reaction temperature on the electrolyte prepared from (NH4)2V6O16 reduction products; (a) UV-Vis spectrophotometric analysis; (b) Variation of average valence state and concentration
图8 500~550 ℃多钒酸铵还原产物所制电解液平均价态及浓度变化
Fig.8 Average valence state and concentration of electrolytes prepared from (NH4)2V6O16 reduction products under 500~550 ℃
图9 反应温度对五氧化二钒还原产物物相结构的影响;(a)五氧化二钒还原产物的XRD图谱;(b)五氧化二钒还原产物的FT-IR图谱
Fig.9 The effects of reaction temperature on the phase structure of V2O5 reduction products; (a) XRD patterns of the V2O5 reduction products; (b) FT-IR patterns of the V2O5 reduction products;
图10 反应温度对五氧化二钒还原产物后电解液的影响;(a)钒电解液紫外-可见分光光度计分析;(b)钒电解液平均价态及浓度变化
Fig.10 The effects of reaction temperature on the electrolyte prepared from V2O5 reduction products; (a) UV-Vis spectrophotometric analysis; (b) Variation of average valence state and concentration
图11 450~500 ℃五氧化二钒还原产物后电解液平均价态及浓度
Fig.11 Average valence state and concentration of electrolytes prepared from V2O5 reduction products under 450~500 ℃
图12 3.5价钒电解液性能测试;(a)不同钒原料还原后获得的3.5价钒电解液循环伏安测试曲线;(b)电解液充放电循环效率分析图
Fig.12 Performance test results of 3.5 vanadium electrolytes prepared; (a) cyclic voltammetry of 3.5-valence vanadium electrolyte from different raw materials; (b) electrolyte charge-discharge cycling efficiency analysis chart
| 原料 | 氧化峰电流 (IPO) | 还原峰电流 (IPR) | 峰值电流比 (IPO/IPR) | 峰值电位差 (ΔEP) | 电导率 (S/m) |
|---|---|---|---|---|---|
| 偏钒酸铵 | 0.00951 | 0.00676 | 1.40 | 0.262 | 19.2 |
| 五氧化二钒 | 0.00987 | 0.00669 | 1.47 | 0.272 | 12.8 |
| 多钒酸铵 | 0.00988 | 0.00637 | 1.55 | 0.347 | 11.0 |
表3 不同钒原料还原后获得3.5价钒电解液循环伏安测试数据及电导率分析结果
Table 3 Electrochemical (CV) and conductivity analysis of 3.5-valent vanadium electrolytes derived from various vanadium materials
| 原料 | 氧化峰电流 (IPO) | 还原峰电流 (IPR) | 峰值电流比 (IPO/IPR) | 峰值电位差 (ΔEP) | 电导率 (S/m) |
|---|---|---|---|---|---|
| 偏钒酸铵 | 0.00951 | 0.00676 | 1.40 | 0.262 | 19.2 |
| 五氧化二钒 | 0.00987 | 0.00669 | 1.47 | 0.272 | 12.8 |
| 多钒酸铵 | 0.00988 | 0.00637 | 1.55 | 0.347 | 11.0 |
| [1] | China Energy News, Energy Outlook BP 2024 (Chinese Version) [EB/OL]. . |
| [2] | Liu X, Zhang Y, Smith J . et al. Globally interconnected solar-wind system addresses future energy variability [J]. Nature, 2025, 630: 123-130. |
| [3] | Meng Y C, Ye Z, Chen L, et al. Energy storage deployment and benefits in the Chinese electricity market considering renewable energy uncertainty and energy storage life cycle costs[J]. Processes, 2024, 12(1): 130. |
| [4] | Sharmoukh W. Redox flow batteries as energy storage systems: materials, viability, and industrial applications[J]. RSC Advances, 2025, 15(13): 10106-10143. |
| [5] | Ashok A, Kumar A. A comprehensive review of metal-based redox flow batteries: progress and perspectives[J]. Green Chemistry Letters and Reviews, 2024, 17(1): 2302834. |
| [6] | Shi Y, Eze C K, Xiong B Y, et al. Recent development of membrane for vanadium redox flow battery applications: a review[J]. Applied Energy, 2019, 238: 202-224. |
| [7] | Huang Z B, Mu A L, Wu L X, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7786-7810. |
| [8] | Jung B Y, Ryu C H, Hwang G J. Characteristics of the all-vanadium redox flow battery using ammonium metavanadate electrolyte[J]. Korean Journal of Chemical Engineering, 2022, 39(9): 2361-2367. |
| [9] | Zheng N B, Qiu X M, Jin S Q, et al. Preparation of V4+electrolyte by nanofluid-based electrocatalytic reduction of V2O5 for vanadium redox flow batteries[J]. Electrochimica Acta, 2025, 513: 145532. |
| [10] | Du J Y, Lin H T, Zhang L Y, et al. Advanced materials for vanadium redox flow batteries: major obstacles and optimization strategies[J]. Advanced Functional Materials, 2025: 2501689. |
| [11] | 国家市场监督管理总局, 国家标准化管理委员会. 全钒液流电池用电解液: [S]. 北京: 中国标准出版社, 2018. |
| State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Electrolyte for vanadium flow battery: [S]. Beijing: Standards Press of China, 2018. | |
| [12] | Maurice A A, Quintero A E, Vera M. A comprehensive guide for measuring total vanadium concentration and state of charge of vanadium electrolytes using UV–Visible spectroscopy[J]. Electrochimica Acta, 2024, 482: 144003. |
| [13] | 胡超, 董玉明, 张伟, 等. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
| Hu C, Dong Y M, Zhang W, et al. Preparation of high concentration positive electrolyte for all-vanadium flow battery by activating vanadium pentoxide with concentrated sulfuric acid[J]. CIESC Journal, 2023, 74(S1): 338-345. | |
| [14] | Guo Y, Yang Y D, Li W J, et al. Novel process to prepare a vanadium electrolyte from a calcification roasting–acid leaching solution of vanadium slag[J]. Industrial & Engineering Chemistry Research, 2023, 62(40): 16411-16418. |
| [15] | Khaki B, Das P. Definition of multi-objective operation optimization of vanadium redox flow and lithium-ion batteries considering levelized cost of energy, fast charging, and energy efficiency based on current density[J]. Journal of Energy Storage, 2023, 64: 107246. |
| [16] | Hu C, Dong Y M, Zhang W, et al. Clean preparation of mixed trivalent and quadrivalent vanadium electrolyte for vanadium redox flow batteries by catalytic reduction with hydrogen[J]. Journal of Power Sources, 2023, 555: 232330. |
| [17] | Skyllas-Kazacos M, Kazacos G, Poon G, et al. Recent advances with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010, 34(2): 182-189. |
| [18] | 郭辉. 全钒液流电池用电解液的制备与性能研究[D]. 北京: 北京化工大学, 2022. |
| Guo H. Preparation and properties of electrolyte for vanadium flow battery[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| [19] | Guo Y, Huang J, Feng J K. Research progress in preparation of electrolyte for all-vanadium redox flow battery[J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 33-43. |
| [20] | 叶涛, 王怡君, 唐子龙, 等. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
| Ye T, Wang Y J, Tang Z L, et al. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid[J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. | |
| [21] | Wang Y H, Chen P, He H. Review: Preparation and modification of all-vanadium redox flow battery electrolyte for green development[J]. Ionics, 2025, 31(1): 23-40. |
| [22] | 河钟郁, 黄德炫. 钒电解液的制备方法以及包含钒电解液的电池: CN117397075A[P]. 2024-01-12. |
| He Z Y, Huang D X. Preparation method of vanadium electrolyte and battery containing vanadium electrolyte: 202180098869.2[P]. 2024-01-12. | |
| [23] | 胡超. 全钒液流电池电解液的制备及其性能研究[D]. 秦皇岛: 燕山大学, 2023. |
| Hu C. Preparation and properties of electrolyte for vanadium flow battery[D]. Qinhuangdao: Yanshan University, 2023. | |
| [24] | 王程. 氨气气相还原短程制备钒电解液应用基础研究[D]. 北京: 中国科学院大学, 2024. |
| Wang C. Basic research on the application of ammonia gas phase reduction in the short-range preparation of vanadium electrolytes[D]. Beijing: Chinese Academy of Sciences, 2024. | |
| [25] | 谢浩, 尹兴荣, 吴雄伟, 等. 用于全钒液流电池的钒电解液的制备方法及钒电解液和应用: CN120089772A[P]. 2025-06-03..Xie H, Ying X R, Wu X W, et al. Preparation method of vanadium electrolyte for all-vanadium redox flow batteries and application: CN120089772A[P].2025-04-01. |
| [26] | Wang C, Li L J, Du H. Cleaner production of 3.5 valent vanadium electrolyte from ammonium metavanadate by ammonia reduction-sulfuric acid dissolution method[J]. Tungsten, 2024, 6(3): 555-560. |
| [27] | 魏冬, 林友斌, 杨霖霖. 一种以多钒酸铵为原料制备全钒电解液的制备方法:CN119674156A[P]. 2025-03-21. |
| Wei D, Lin Y B, Yang L L. Method for preparing all-vanadium electrolyte from ammonium polyvanadate:CN119674156A[P]. 2024-12-02. | |
| [28] | 杨晓武, 李伟达, 袁爱武. 钒电解液的工业化制备技术分析[J]. 稀有金属与硬质合金, 2025, 53(3): 127-134. |
| Yang X W, Li W D, Yuan A W. Analysis of industrial preparation technology for vanadium electrolyte[J]. Rare Metals and Cemented Carbides, 2025, 53(3): 127-134. | |
| [29] | Cao L Y, Skyllas-Kazacos M, Menictas C, et al. A review of electrolyte additives and impurities in vanadium redox flow batteries[J]. Journal of Energy Chemistry, 2018, 27(5): 1269-1291. |
| [30] | Kang U I. Preparation of vanadium (3.5+) electrolyte by hydrothermal reduction process using citric acid for vanadium redox flow battery[J]. Electrochem, 2024, 5(4): 470-481. |
| [1] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [2] | 刘鑫, 郑皓仁, 陈强, 丁静怡, 黄康, 徐至. 全钒液流电池用纤维素纳米晶掺杂混合基质膜[J]. 化工学报, 2025, 76(5): 2294-2303. |
| [3] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| [4] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
| [5] | 陈宇翔, 刘传磊, 龚子君, 赵起越, 郭冠初, 姜豪, 孙辉, 沈本贤. 机器学习辅助乙硫醇高效吸收溶剂分子设计[J]. 化工学报, 2024, 75(3): 914-923. |
| [6] | 汤涵, 蔡进, 覃海航, 陈光进, 孙长宇. 水合物共存体系中气体溶解度预测模型[J]. 化工学报, 2024, 75(11): 4348-4358. |
| [7] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
| [8] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
| [9] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
| [10] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
| [11] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
| [12] | 洪小东, 董轩, 林美金, 廖祖维, 任聪静, 杨遥, 蒋斌波, 王靖岱, 阳永荣. 图神经网络预测烃类工质的热力学性质[J]. 化工学报, 2023, 74(11): 4466-4474. |
| [13] | 刘宗鹏, 胡少剑, 张宇宁, 马玲, 李磊, 武本成, 朱建华. 复合型多元醇酯合成反应的热力学分析及动力学研究[J]. 化工学报, 2023, 74(11): 4475-4486. |
| [14] | 郑直, 郭乃胜, 尤占平, 王家伟. 废木油与石油沥青相容机制的分子动力学研究[J]. 化工学报, 2023, 74(10): 4037-4050. |
| [15] | 杜若晗, 逄博, 王宁, 崔福军, 郭明钢, 贺高红, 吴雪梅. 连续共价有机框架筛分复合膜及全钒电池性能[J]. 化工学报, 2022, 73(9): 4163-4172. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号