化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5047-5056.DOI: 10.11949/0438-1157.20250432
收稿日期:2025-04-22
修回日期:2025-06-02
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
韩志敏
作者简介:韩志敏(1988—),男,博士,副教授,hanzm@neepu.edu.cn
基金资助:
Zhimin HAN(
), Wei LIU, Jiang LI, Taozhi WANG, Zhiming XU
Received:2025-04-22
Revised:2025-06-02
Online:2025-10-25
Published:2025-11-25
Contact:
Zhimin HAN
摘要:
为解决换热器通道内的颗粒污垢问题,通过搭建实验台研究了脉动通道内开孔涡流发生器的抑垢特性。对比了四种不同类型通道的颗粒污垢特性;研究了脉动通道内不同翼型开孔涡流发生器的颗粒沉积特性;分析了开孔矩形翼涡流发生器迎流角度对颗粒污垢的影响规律。结果表明,相较于光滑通道,脉动通道的抑垢率为15.7%,脉动+矩形翼通道的抑垢率为41.2%,脉动+开孔矩形翼通道的抑垢效果最佳,其抑垢率为47.5%。对比三种不同翼型(三角翼、梯形翼、矩形翼)开孔涡流发生器,发现开孔矩形翼涡流发生器的抑垢效果最好。当迎流角度小于90°时,污垢热阻随着开孔矩形翼涡发生器迎流角度的增大逐渐减小,当迎流角度为90°时污垢热阻达到最小。
中图分类号:
韩志敏, 刘威, 李江, 王韬智, 徐志明. 脉动通道内开孔涡流发生器的抑垢特性实验研究[J]. 化工学报, 2025, 76(10): 5047-5056.
Zhimin HAN, Wei LIU, Jiang LI, Taozhi WANG, Zhiming XU. Experimental research of the anti-fouling effect of the perforated vortex generator in the pulsating channel[J]. CIESC Journal, 2025, 76(10): 5047-5056.
| 粒径/μm | 孔隙率/% | 密度/(kg/m3) | 热导率/(W/(m·K)) |
|---|---|---|---|
| 10 | 25 | 1900 | 1.62 |
表1 二氧化硅物性参数
Table 1 Physical parameters of SiO2
| 粒径/μm | 孔隙率/% | 密度/(kg/m3) | 热导率/(W/(m·K)) |
|---|---|---|---|
| 10 | 25 | 1900 | 1.62 |
| 物理量 | 测量误差/% |
|---|---|
| 温度 | 0.203 |
| 压差 | 0.109 |
| 流量 | 0.504 |
| 污垢热阻 | 4.8 |
| 传热系数 | 4.1 |
表2 测量误差
Table 2 Measurement errors
| 物理量 | 测量误差/% |
|---|---|
| 温度 | 0.203 |
| 压差 | 0.109 |
| 流量 | 0.504 |
| 污垢热阻 | 4.8 |
| 传热系数 | 4.1 |
| [1] | 尹应德, 农雅善, 李远羽, 等. 扭曲管同轴套管换热器强化传热和流阻特性[J]. 化工学报, 2024, 75(10): 3528-3535. |
| Yin Y D, Nong Y S, Li Y Y, et al. Enhanced heat transfer and flow resistance characteristics of twisted tube double-pipe heat exchangers[J]. CIESC Journal, 2024, 75(10): 3528-3535. | |
| [2] | 崔巍, 李渊, 贾岩, 等. 动力电池热管理系统复合散热装置的结构设计与优化[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(2): 115-122. |
| Cui W, Li Y, Jia Y, et al. Structure design and optimization of compound cooling device for power battery thermal management system[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(2): 115-122. | |
| [3] | Steinhagen R, Müller-Steinhagen H, Maani K. Problems and costs due to heat exchanger fouling in new zeal and industries[J]. Heat Transfer Engineering, 1993, 14(1): 19-30. |
| [4] | Murshed M, Apergis N, Alam M S, et al. The impacts of renewable energy, financial inclusivity, globalization, economic growth, and urbanization on carbon productivity: evidence from net moderation and mediation effects of energy efficiency gains[J]. Renewable Energy, 2022, 196: 824-838. |
| [5] | 孙芹, 周国庆, 翟万领, 等. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3): 1006-1017. |
| Sun Q, Zhou G Q, Zhai W L, et al. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources[J]. CIESC Journal, 2025, 76(3): 1006-1017. | |
| [6] | Li J, Xu C, Ye J L, et al. Enhanced anti-fouling of forward osmosis membrane by pulsatile flow operation in textile wastewater treatment[J]. Desalination, 2023, 565: 116878. |
| [7] | Kato Y, Fujimoto K, Yanagida H, et al. Effect of the flow structure of pulsating turbulent flow in a duct with a double 90° bend on convective heat transfer at the wall[J]. International Communications in Heat and Mass Transfer, 2025, 164: 108795. |
| [8] | 杨云, 张鹏, 饶宇, 等. 凹陷涡发生器非稳态流动与传热分离涡模拟[J]. 工程热物理学报, 2017, 38(6): 1196-1202. |
| Yang Y, Zhang P, Rao Y, et al. A detached eddy simulation of unsteady flow and heat transfer characteristics of dimple vortex generators[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1196-1202. | |
| [9] | Saini P, Dhar A, Powar S. Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes[J]. International Journal of Heat and Mass Transfer, 2023, 209: 124142. |
| [10] | Liang X Y, Min M, Bian K K, et al. Study on the enhanced heat transfer and exergy performance of the finned tube heat exchanger with vortex generator[J]. International Journal of Thermal Sciences, 2025, 210: 109639. |
| [11] | Liu H L, Fan C C, He Y L, et al. Heat transfer and flow characteristics in a rectangular channel with combined delta winglet inserts[J]. International Journal of Heat and Mass Transfer, 2019, 134: 149-165. |
| [12] | 张登庆, 张锁龙, 陆怡. 诱导换热管流体弹性振动的换热及结垢性能研究[J]. 化工进展, 2005, 24(7): 773-776. |
| Zhang D Q, Zhang S L, Lu Y. Study on properties of heat transfer and scaling for induced flow vibration in tube[J]. Chemical Industry and Engineering Progress, 2005, 24(7): 773-776. | |
| [13] | Wang F L, Tang S Z, He Y L, et al. Heat transfer and fouling performance of finned tube heat exchangers: experimentation via on line monitoring[J]. Fuel, 2019, 236: 949-959. |
| [14] | Wang Y, He Y L, Yang W W, et al. Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow[J]. International Journal of Heat and Mass Transfer, 2015, 82: 51-65. |
| [15] | Akcay S. Numerical analysis of heat transfer improvement for pulsating flow in a periodic corrugated channel with discrete V-type winglets[J]. International Communications in Heat and Mass Transfer, 2022, 134: 105991. |
| [16] | Nghaimesh S J, Jabbar M A. Heat transfer enhancement simulation employing flat and curved winglet vortex generator pairs with punched holes[J]. International Journal of Heat and Technology, 2024, 42(5): 1643-1650. |
| [17] | Lu G F, Zhou G B. Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes[J]. International Journal of Heat and Mass Transfer, 2016, 102: 679-690. |
| [18] | Wang J B, Zeng L C, He Y T. Thermal performance augmentation of microchannel using curved rectangular winglet vortex generators having rectangular perforation[J]. Chemical Engineering Science, 2025, 302: 120860. |
| [19] | Wu J M, Tao W Q. Effect of longitudinal vortex generator on heat transfer in rectangular channels[J]. Applied Thermal Engineering, 2012, 37: 67-72. |
| [20] | Zhou G B, Feng Z Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes[J]. International Journal of Thermal Sciences, 2014, 78: 26-35. |
| [21] | Saini P, Shah M P. Performance evaluation of finned tube heat exchanger using curved wavy delta winglet vortex generators with circular perforations[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108184. |
| [22] | Wang J B, Zeng L C, Yu S, et al. Experimental and numerical investigations of tube inserted with novel perforated rectangular V-shape vortex generators[J]. Applied Thermal Engineering, 2024, 249: 123451. |
| [23] | Kumar S, Singh S K, Sharma D. A comprehensive review on thermal performance enhancement of plate heat exchanger[J]. International Journal of Thermophysics, 2022, 43(7): 109. |
| [24] | Fiebig M, Kallweit P, Mitra N, et al. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow[J]. Experimental Thermal and Fluid Science, 1991, 4(1): 103-114. |
| [25] | He Y L, Chu P, Tao W Q, et al. Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators[J]. Applied Thermal Engineering, 2013, 61(2): 770-783. |
| [26] | Yang Q R, Zhang Z L, Yao E R, et al. Experimental study of the particulate dirt characteristics on pipe heat transfer surface[J]. Journal of Thermal Science, 2019, 28(5): 1054-1064. |
| [27] | 梁延东, 徐源, 徐雪霏, 等. 交变磁场对换热壁面CaCO3污垢的阻垢特性实验研究[J]. 中国电机工程学报, 2022, 42(21): 7913-7922. |
| Liang Y D, Xu Y, Xu X F, et al. Experimental study on the fouling inhibition characteristics of an alternating magnetic field on CaCO3 fouling of a heat transfer surface[J]. Proceedings of the CSEE, 2022, 42(21): 7913-7922. | |
| [28] | Caliskan S, Dogan A, Kotcioglu I. Experimental investigation of heat transfer from different pin fin in a rectangular channel[J]. Experimental Heat Transfer, 2019, 32(4): 376-392. |
| [29] | 史昊鹏, 钟达文, 廉学新, 等. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
| Shi H P, Zhong D W, Lian X X, et al. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures[J]. CIESC Journal, 2023, 74(7): 2880-2888. | |
| [30] | Zhang N, Wei X, Yang Q R, et al. Numerical simulation and experimental study of the growth characteristics of particulate fouling on pipe heat transfer surface[J]. Heat and Mass Transfer, 2019, 55(3): 687-698. |
| [31] | Oh Y, Kim K. Effects of position and geometry of curved vortex generators on fin-tube heat-exchanger performance characteristics[J]. Applied Thermal Engineering, 2021, 189: 116736. |
| [32] | 徐志明, 郭元杰, 韩志敏, 等. 丁胞型圆管CaSO4的污垢特性[J]. 化工学报, 2018, 69(4): 1341-1348. |
| Xu Z M, Guo Y J, Han Z M, et al. CaSO4 fouling characteristics on dimple tube[J]. CIESC Journal, 2018, 69(4): 1341-1348. | |
| [33] | Kline S J. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering. 1963, 75: 3-8. |
| [34] | Förster M, Augustin W, Bohnet M. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation[J]. Chemical Engineering and Processing: Process Intensification, 1999, 38(4/5/6): 449-461. |
| [35] | 韩志敏, 李江, 陈则齐, 等. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
| Han Z M, Li J, Chen Z Q, et al. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel[J]. CIESC Journal, 2024, 75(7): 2486-2496. | |
| [36] | Wang J B, He Y T, Zeng L C, et al. Thermohydraulic performance intensification in a rectangular channel using punched vortex generators[J]. International Communications in Heat and Mass Transfer, 2024, 157: 107799. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [3] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [4] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [5] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [6] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [7] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [8] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| [9] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [10] | 邹家庆, 张肇钰, 张建国, 张博宇, 刘定胜, 毛庆, 王挺, 李建军. 碱水制氢电解槽极板通道中气泡的生成及演化性质[J]. 化工学报, 2025, 76(9): 4786-4799. |
| [11] | 梁晓江, 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇. 电分散管式填充床中荷电气泡的分散特性研究[J]. 化工学报, 2025, 76(8): 3915-3931. |
| [12] | 张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852. |
| [13] | 刘璐, 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润. 星形亲水区组合表面冷凝液滴脱落特性实验研究[J]. 化工学报, 2025, 76(8): 3905-3914. |
| [14] | 苏国庆, 田学梅, 李彦, 张建文, 张志军. 气力输送系统弯管三通的冲蚀分析及改进[J]. 化工学报, 2025, 76(8): 3894-3904. |
| [15] | 张建伟, 刘玉成, 董鑫, 冯颖. 气泡扰动强化撞击流共沉淀法合成碳酸钙粉体[J]. 化工学报, 2025, 76(8): 4052-4060. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号