化工学报 ›› 2025, Vol. 76 ›› Issue (10): 4988-5002.DOI: 10.11949/0438-1157.20250535
郭璐轩1(
), 黄灵芝1(
), 贾文超1, 吴鲁1, 朱宏伟2, 牛梅红1, 石海强1(
)
收稿日期:2025-05-13
修回日期:2025-07-12
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
黄灵芝,石海强
作者简介:郭璐轩(2000—),女,硕士研究生,762247528@qq.com
基金资助:
Luxuan GUO1(
), Lingzhi HUANG1(
), Wenchao JIA1, Lu WU1, Hongwei ZHU2, Meihong NIU1, Haiqiang SHI1(
)
Received:2025-05-13
Revised:2025-07-12
Online:2025-10-25
Published:2025-11-25
Contact:
Lingzhi HUANG, Haiqiang SHI
摘要:
低共熔溶剂(DES)作为一种绿色、高效的新型溶剂体系,在植物纤维阳离子化改性领域中展现出显著优势。本文系统综述了DES体系在植物纤维阳离子化改性中的研究进展,重点探讨了二元和三元TDES溶剂的化学工艺、改性机理及其应用性能。首先,分析了不同预处理方法(物理、化学及生物酶法)对提升纤维可及性和反应活性的作用;其次,详细阐述了羧基酸类、尿素类及甘油类二元DES溶剂体系在纤维阳离子化中的作用机制,并总结了三元TDES溶剂通过多元组分协同效应进一步优化改性效果的研究成果。研究表明,DES溶剂通过破坏纤维素的氢键网络,高效将季铵基团引入纤维素分子,提高了纤维分散性和纳米纤维产率。改性后的阳离子化纤维在制浆造纸、纳米材料、污水处理及生物医药等领域具有广泛应用。本文进一步探讨了当前DES体系在组分相互作用机制、溶剂回收及工业化应用中的技术瓶颈,并对未来研究方向提出了展望,可为植物纤维的高值化利用提供理论依据和技术参考。
中图分类号:
郭璐轩, 黄灵芝, 贾文超, 吴鲁, 朱宏伟, 牛梅红, 石海强. 基于DES溶剂体系的植物纤维阳离子改性研究进展[J]. 化工学报, 2025, 76(10): 4988-5002.
Luxuan GUO, Lingzhi HUANG, Wenchao JIA, Lu WU, Hongwei ZHU, Meihong NIU, Haiqiang SHI. Research progress on cationic modification of plant fibers based on DES solvent systems[J]. CIESC Journal, 2025, 76(10): 4988-5002.
图2 植物纤维预处理方法:(a)植物纤维预处理效果[5];(b)PFI精炼预处理[32];(c)酸、碱预处理[33];(d)生物酶预处理[34];(e)新型预处理技术辅助DES技术[14];(f)预处理技术优缺点
Fig.2 Plant fiber pretreatment method: (a) Pretreatment effect of plant fiber[5]; (b) PFI refining pretreatment [32]; (c) Pretreatment of acids and bases[33]; (d) Biological enzyme pretreatment[34]; (e) New pretreatment technology assists DES technology[14]; (f) Advantages and disadvantages of pretreatment technology
图3 (a)LA/ChCl DES阳离子化纤维素反应机理;(b)CA/ChCl DES联合微波处理技术生产CNF[51];(c)RCOOH/ChCl DES预处理纤维素实验流程及SEM图[52]
Fig.3 (a) Reaction mechanism of cationic cellulose with LA/ChCl DES; (b) Production of CNF by CA/ChCl DES combined microwave processing technology[51]; (c) Experimental process and SEM image of cellulose pretreatment with RCOOH/ChCl DES[52]
图4 (a)Glu/TA DES阳离子化纤维素流程及机理[56];(b)ChCl/Urea DES阳离子化纤维素作用机理[60];(c)TMAH·5H2O/Urea DES阳离子化纤维素作用机理[49]
Fig.4 (a) Glu/TA DES cationized cellulose process and mechanism[56]; (b) Mechanism of action of ChCl/Urea DES cationized cellulose [60]; (c) Mechanism of action of TMAH·5H2O/Urea DES cationized cellulose[49]
图5 (a)P/N/S引入的TDES改性纤维素机理[61];(b)Bh/Gl DES阳离子化纤维素机理[27];(c)AhG/Gl DES原子间距离反应理论[62,64];(d)C-CNC不同时间絮凝图[64]
Fig.5 (a) Mechanism of TDES-modified cellulose introduced by P/N/S[61];(b) Mechanism of Bh/Gl DES cationization of cellulose[27]; (c) AhG/Gl DES interatomic distance reaction theory[62,64]; (d) C-CNC flocculation diagram at different times[64]
图6 (a)p-TSA/ChCl DES生产山梨醇反应机理[67];(b)NaIO4两步法阳离子化纤维素[68];(c)Bh/p-TSA/TEMA DES阳离子化纤维素机理[23];(d)FeCl3/Gly/GH DES处理竹纤维反应机理[69];(e),(f)竹纤维样品木质素去除率、木聚糖产率和酶解消化率[69]
Fig.6 (a) Reaction mechanism of p-TSA/ChCl DES to sorbitol[67]; (b) NaIO4 two-step cationized cellulose[68]; (c) Mechanism of cationization of cellulose by Bh/p-TSA/TEMA DES[23]; (d) Reaction mechanism diagram of bamboo fiber treated with FeCl3/Gly/GH DES[69]; (e),(f) lignin removal rate, xylan yield and enzymatic digestibility of bamboo fiber samples[69]
| 分类 | 羧基酸-季铵盐 DES | 尿素-季铵盐 DES | 甘油-季铵盐 DES |
|---|---|---|---|
| 反应性 | 中等反应性,羧基与季铵盐的静电作用较强 | 较高反应性,尿素易与纤维羟基形成氢键 | 较低反应性,甘油需催化剂促进反应 |
| 反应机理 | 羧基与季铵盐的离子键结合,可能伴随酯化反应 | 尿素与纤维羟基缩合形成氨基甲酸酯或氢键网络 | 甘油羟基与纤维羟基醚化或形成交联结构 |
| 特点 | 耐水性较好,柔软性中等,稳定性高 | 吸湿性强,易生物降解成本低 | 亲水性佳,环保性好,反应条件温和 |
| 经济性 | 原料成本中等,需控制pH和温度 | 原料廉价,工艺简单,适合大规模生产 | 甘油来源广泛,但可能需要额外催化剂增加成本 |
表1 二元DES阳离子化纤维反应机理总结
Table 1 Summary of the reaction mechanism of binary DES cationic fibers
| 分类 | 羧基酸-季铵盐 DES | 尿素-季铵盐 DES | 甘油-季铵盐 DES |
|---|---|---|---|
| 反应性 | 中等反应性,羧基与季铵盐的静电作用较强 | 较高反应性,尿素易与纤维羟基形成氢键 | 较低反应性,甘油需催化剂促进反应 |
| 反应机理 | 羧基与季铵盐的离子键结合,可能伴随酯化反应 | 尿素与纤维羟基缩合形成氨基甲酸酯或氢键网络 | 甘油羟基与纤维羟基醚化或形成交联结构 |
| 特点 | 耐水性较好,柔软性中等,稳定性高 | 吸湿性强,易生物降解成本低 | 亲水性佳,环保性好,反应条件温和 |
| 经济性 | 原料成本中等,需控制pH和温度 | 原料廉价,工艺简单,适合大规模生产 | 甘油来源广泛,但可能需要额外催化剂增加成本 |
图7 (a)TDES实验流程图[70];(b)TDES改性竹纤维反应机理[70];(c)~(f)纤维样品SEM图[70]
Fig.7 (a) TDES experimental flow chart[70]; (b) Reaction mechanism of TDES modified bamboo fiber[70]; (c)—(f) SEM images of fiber sample[70]
| 序号 | 原料 | DES | 辅助工艺 | 成品 | 产率/% | 应用 | 文献 | ||
|---|---|---|---|---|---|---|---|---|---|
| HBD | HBA | 比例 | |||||||
| 1 | 漂白针叶木牛皮纸浆 | CA | ChCl | 1∶1 | 高压均质 | CNF | 84.19 | 纳米纸( CNP ) | [ |
| 2 | 小麦秸秆 | AA | ChCl | 1,2,3∶1 | NaIO4 | LCNC | — | 水凝胶 | [ |
| 3 | 橙皮 | TA | Glu | 2∶1 | 机械、 超声 | CNF | 95.8 | 抗菌 | [ |
| 4 | 玉米秸秆 | GA、EG | TMBAC | 1∶1∶2 | 热解炉 | 固体残渣 | 66.9~71.9 | 生物油 | [ |
| 5 | 木薯渣 | CA、LA | ChCl | 1∶10∶1 | 球磨 | 木质纤维素 | 82.52 | 回收利用 | [ |
| 6 | 纤维素整体柱 | Urea | ChCl | 2∶1 | 热致相分离法 | 阳离子化纤维 | — | 阴离子吸附 | [ |
| 7 | 竹纤维 | CAA、Urea | ChCl | 1∶2∶1 | 研磨 | CMCNF | 70~85 | CMCNF | [ |
| 8 | 漂白硫酸盐桦木浆 | Gly | Bh | 2∶1 | 微射流仪 | CNF | 72.5 | 纤维素薄膜 | [ |
| 9 | 相思阔叶木浆 | Gly | AGH、ChCl | 4∶1∶1 | NaIO4 | CCNF | — | CCNF | [ |
| 10 | 毛竹 | Gly | AGH、FeCl3 | 2∶1∶1 | 微波加热耦合 | 残余纤维素 | 81.17 | 组分分离 | [ |
表2 DES处理植物纤维总结
Table 2 Summary of DES treatment of plant fibers
| 序号 | 原料 | DES | 辅助工艺 | 成品 | 产率/% | 应用 | 文献 | ||
|---|---|---|---|---|---|---|---|---|---|
| HBD | HBA | 比例 | |||||||
| 1 | 漂白针叶木牛皮纸浆 | CA | ChCl | 1∶1 | 高压均质 | CNF | 84.19 | 纳米纸( CNP ) | [ |
| 2 | 小麦秸秆 | AA | ChCl | 1,2,3∶1 | NaIO4 | LCNC | — | 水凝胶 | [ |
| 3 | 橙皮 | TA | Glu | 2∶1 | 机械、 超声 | CNF | 95.8 | 抗菌 | [ |
| 4 | 玉米秸秆 | GA、EG | TMBAC | 1∶1∶2 | 热解炉 | 固体残渣 | 66.9~71.9 | 生物油 | [ |
| 5 | 木薯渣 | CA、LA | ChCl | 1∶10∶1 | 球磨 | 木质纤维素 | 82.52 | 回收利用 | [ |
| 6 | 纤维素整体柱 | Urea | ChCl | 2∶1 | 热致相分离法 | 阳离子化纤维 | — | 阴离子吸附 | [ |
| 7 | 竹纤维 | CAA、Urea | ChCl | 1∶2∶1 | 研磨 | CMCNF | 70~85 | CMCNF | [ |
| 8 | 漂白硫酸盐桦木浆 | Gly | Bh | 2∶1 | 微射流仪 | CNF | 72.5 | 纤维素薄膜 | [ |
| 9 | 相思阔叶木浆 | Gly | AGH、ChCl | 4∶1∶1 | NaIO4 | CCNF | — | CCNF | [ |
| 10 | 毛竹 | Gly | AGH、FeCl3 | 2∶1∶1 | 微波加热耦合 | 残余纤维素 | 81.17 | 组分分离 | [ |
| [1] | Cheng J Y, Huang C, Zhan Y N, et al. A novel mineral-acid free biphasic deep eutectic solvent/γ-valerolactone system for furfural production and boosting the enzymatic hydrolysis of lignocellulosic biomass[J]. Bioresource Technology, 2023, 387: 129653. |
| [2] | 张世超, 刘佳璇, 李群. 植物纤维的阳离子化改性及其对纤维结构的影响[J]. 天津科技大学学报, 2020, 35(5): 15-19. |
| Zhang S C, Liu J X, Li Q. Cationic modification of plant fibers and its effect on fiber structure[J]. Journal of Tianjin University of Science & Technology, 2020, 35(5): 15-19. | |
| [3] | 张贺, 黄旭乐, 孙衍宁, 等. 纸浆纤维阳离子化改性的预处理及改性方法研究进展[J]. 中国造纸学报, 2023, 38(4): 96-106. |
| Zhang H, Huang X L, Sun Y N, et al. Research progress on pretreatment and modification methods of pulp fiber cationic modification[J]. Transactions of China Pulp and Paper, 2023, 38(4): 96-106. | |
| [4] | 黄旭乐, 靳汇奇, 盛雪茹, 等. 纤维素纤维基阴离子吸附剂制备研究进展:预处理及阳离子化改性[J]. 中国造纸学报, 2021, 36(4): 91-99. |
| Huang X L, Jin H Q, Sheng X R, et al. Research progress in the preparation of cellulose fiber-based anionic adsorbents: pretreatment and cationic modification[J]. Transactions of China Pulp and Paper, 2021, 36(4): 91-99. | |
| [5] | Chen C J, Kuang Y D, Zhu S Z, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642-666. |
| [6] | Tang Z W, Lin X X, Yu M Q, et al. Recent advances in TEMPO-oxidized cellulose nanofibers: oxidation mechanism, characterization, properties and applications[J]. International Journal of Biological Macromolecules, 2024, 259: 129081. |
| [7] | Liu A, Li X H, Xu W B, et al. Synthesis of novel deep eutectic solvent-modified nano cellulosic gel formulation-based strain sensor for human motion monitoring[J]. International Journal of Biological Macromolecules, 2025, 284: 138188. |
| [8] | 朱旭海. 阳离子改性微纤化纤维素的制备及其吸附胆酸盐能力的研究[D]. 天津: 天津科技大学, 2015. |
| Zhu X H. Preparation of cationic modified microfibrillated cellulose and its adsorption capacity for cholate[D]. Tianjin: Tianjin University of Science & Technology, 2015. | |
| [9] | Jia Z W, Li X L, Xu S B, et al. Novel ternary deep eutectic solvents pretreatment of corn stalk to realize high-value utilization[J]. Chemical Engineering Journal, 2024, 500: 156567. |
| [10] | Jiang J G, Carrillo-Enríquez N C, Oguzlu H, et al. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7182-7191. |
| [11] | Mariño M A, Paredes M G, Martinez N, et al. A ternary eutectic solvent for cellulose nanocrystal production: exploring the recyclability and pre-pilot scale-up[J]. Frontiers in Chemistry, 2023, 11: 1233889. |
| [12] | Zhuo H, Dong X Y, Liu Q Y, et al. Bamboo-inspired ultra-strong nanofiber-reinforced composite hydrogels[J]. Nature Communications, 2025, 16(1): 980. |
| [13] | Zhang F L, Pang Z Q, Dong C H, et al. Preparing cationic cotton linter cellulose with high substitution degree by ultrasonic treatment[J]. Carbohydrate Polymers, 2015, 132: 214-220. |
| [14] | Fu M T, Zhang H M, Bai J I, et al. Application of deep eutectic solvents with modern extraction techniques for the recovery of natural products: a review[J]. ACS Food Science & Technology, 2025, 5(2): 444-461. |
| [15] | 汪昭奇, 黄金田. 超声协同TEMPO氧化纳米纤维素膜的制备及表征[J]. 内蒙古农业大学学报(自然科学版), 2022, 43(4): 68-75. |
| Wang Z Q, Huang J T. Preparation and characterization of ultrasonic and TEMPO oxidized nanocellulose films[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2022, 43(4): 68-75. | |
| [16] | 万春容, 董泽宏, 王凯, 等. 阳离子化纤维素的制备及应用进展[J]. 纸和造纸, 2022, 41(2): 10-15. |
| Wan C R, Dong Z H, Wang K,et al. Progress in preparation and application of cationic cellulose[J]. Paper and Paper Making, 2022, 41(2): 10-15. | |
| [17] | Zhang H, Zhou M F, Jin H Q, et al. Enzyme activity test paper with high wet strength and anion adsorption properties fabricated from whole cationized softwood chemical fiber[J]. International Journal of Biological Macromolecules, 2024, 273: 132769. |
| [18] | Signori-Iamin G, Aguado R J, Tarrés Q, et al. Exploring the synergistic effect of anionic and cationic fibrillated cellulose as sustainable additives in papermaking[J]. Cellulose, 2024, 31(15): 9349-9368. |
| [19] | Sehaqui H, Mautner A, Perez de Larraya U, et al. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties[J]. Carbohydrate Polymers, 2016, 135: 334-340. |
| [20] | Wu C W, Li J, et al. Preparation of cationic softwood kraft pulp fibres as retention additive to produce reconstituted tobacco sheet via paper-making[J]. Cellulose Chemistry and Technology, 2020, 54(5/6): 505-513. |
| [21] | Vuoti S, Narasimha K, Reinikainen K. Green wastewater treatment flocculants and fixatives prepared from cellulose using high-consistency processing and deep eutectic solvents[J]. Journal of Water Process Engineering, 2018, 26: 83-91. |
| [22] | Zaman M, Xiao H N, Chibante F, et al. Synthesis and characterization of cationically modified nanocrystalline cellulose[J]. Carbohydrate Polymers, 2012, 89(1): 163-170. |
| [23] | Sirviö J A. Cationization of lignocellulosic fibers with betaine in deep eutectic solvent: facile route to charge stabilized cellulose and wood nanofibers[J]. Carbohydrate Polymers, 2018, 198: 34-40. |
| [24] | Sirviö J A, Ukkola J, Liimatainen H. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers[J]. Cellulose, 2019, 26(4): 2303-2316. |
| [25] | Sirviö J A, Visanko M, Liimatainen H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry, 2015, 17(6): 3401-3406. |
| [26] | Karimian D, Anzuoni V, Smania Z, et al. Enhanced nanocellulose production from cotton and textile waste using binary and ternary natural deep eutectic solvents[J]. Advanced Sustainable Systems, 2025, 9(1): 2400525. |
| [27] | Hong S, Yuan Y, Li P P, et al. Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent[J]. Industrial Crops and Products, 2020, 154: 112677. |
| [28] | Lu Y Z, Yu J, Ma J X, et al. High-yield preparation of cellulose nanofiber by small quantity acid assisted milling in glycerol[J]. Cellulose, 2019, 26(6): 3735-3745. |
| [29] | Zhang Q, Zhu E Q, Li T Q, et al. High-value utilization of cellulose: intriguing and important effects of hydrogen bonding interactions─a mini-review[J]. Biomacromolecules, 2024, 25(10): 6296-6318. |
| [30] | Li L H, Sun M Z, Hao B J, et al. Dilemma of low-cost filter paper as separator: toughen its wet strength for robust aqueous zinc-ion batteries[J]. The Journal of Physical Chemistry Letters, 2024, 15(2): 380-390. |
| [31] | Xia S Q, Baker G A, Li H, et al. Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification[J]. RSC Advances, 2014, 4(21): 10586-10596. |
| [32] | Jaekel E E, Torres G R, Antonietti M, et al. Cotton-quality fibers from complexation between anionic and cationic cellulose nanoparticles[J]. Scientific Reports, 2024, 14(1): 18406. |
| [33] | Ong V Z, Wu T Y, Chu K K L, et al. A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds[J] Industrial Crops and Products, 2021, 160: 112974. |
| [34] | Wang S D, Gao W H, Chen K F, et al. Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment[J]. Bioresource Technology, 2018, 267: 426-430. |
| [35] | Liu Y Z, Chen W S, Xia Q Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10(8): 1692-1700. |
| [36] | Wang S, Han H, Lei X Q, et al. Cellulose nanofibers produced from spaghetti squash peel by deep eutectic solvents and ultrasonication[J]. International Journal of Biological Macromolecules, 2024, 261: 129777. |
| [37] | Xiong Y J, Li W, Qin Z Z, et al. A green extraction technology of lignocellulose from cassava residue by mechanical activation-assisted ternary deep eutectic solvent[J]. International Journal of Biological Macromolecules, 2024, 281: 136339. |
| [38] | Xiao Z, Zhao Q, Li Q, et al. Mechanochemistry-assisted fabrication of (carboxymethyl)cellulose mediated by minute surface-confined water[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(41): 14999-15011. |
| [39] | Meraj A, Jawaid M, Singh S P, et al. Isolation and characterisation of lignin using natural deep eutectic solvents pretreated kenaf fibre biomass[J]. Scientific Reports, 2024, 14(1): 8672. |
| [40] | Mousa S A, Abdallah H, Khairy S A. The use of green synthesized TiO2/MnO2 nanoparticles in solar power membranes for pulp and paper industry wastewater treatment[J]. Scientific Reports, 2025, 15(1): 2102. |
| [41] | Sonyeam J, Chaipanya R, Suksomboon S, et al. Process design for acidic and alcohol based deep eutectic solvent pretreatment and high pressure homogenization of palm bunches for nanocellulose production[J]. Scientific Reports, 2024, 14(1): 7550. |
| [42] | Dai M R, Dong Y Y, Ma S, et al. Efficient enzymatic hydrolysis of active oxygen and solid alkali/dilute sulfuric acid-pretreated corn cob[J]. Industrial Crops and Products, 2024, 220: 119202. |
| [43] | Kassaye S, Pant K K, Jain S. Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose[J]. Fuel Processing Technology, 2016, 148: 289-294. |
| [44] | Li S L, Jiang W K, Wang H M, et al. Integrated preparation of functional lignin nanoparticles and levulinic acid directly from the pre-hydrolysis liquor of poplar wood[J]. International Journal of Biological Macromolecules, 2024, 265: 130906. |
| [45] | Xu X J, Gai J M, Li Y R, et al. Integrated acetic acid and deep eutectic solvent pretreatment on poplar for co-production of xylo-oligosaccharides, fermentable sugars and lignin antioxidants/adsorbents[J]. International Journal of Biological Macromolecules, 2024, 259(Pt 2): 129138. |
| [46] | Wang L, Zhu X Y, Chen X, et al. Isolation and characteristics of nanocellulose from hardwood pulp via phytic acid pretreatment[J]. Industrial Crops and Products, 2022, 182: 114921. |
| [47] | Zhang Y D, Deng W F, Wang Z B, et al. A green cellulose dissolution system for producing tunable regenerated nanocellulose formate[J]. ACS Nano, 2025, 19(23): 21243-21259. |
| [48] | Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with lonic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
| [49] | Li L, Zhang M Z, Feng Y, et al. Deep eutectic solvent (TMAH·5H2O/Urea) with low viscosity for cellulose dissolution at room temperature[J]. Carbohydrate Polymers, 2024, 339: 122260. |
| [50] | Sirviö J A, Visanko M, Liimatainen H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production[J]. Biomacromolecules, 2016, 17(9): 3025-3032. |
| [51] | Liu W, Du H S, Liu K, et al. Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization[J]. Carbohydrate Polymers, 2021, 267: 118220. |
| [52] | Liu S L, Zhang Q, Gou S H, et al. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers[J]. Carbohydrate Polymers, 2021, 251: 117018. |
| [53] | Lozano M V C, Sciutto G, Prati S, et al. Deep eutectic solvents: green solvents for the removal of degraded gelatin on cellulose nitrate cinematographic films[J]. Heritage Science, 2022, 10(1): 114. |
| [54] | Xiao Q, Dai M Q, Zhou H, et al. Formation and structure evolution of starch nanoplatelets by deep eutectic solvent of choline chloride/oxalic acid dihydrate treatment[J]. Carbohydrate Polymers, 2022, 282: 119105. |
| [55] | Gundupalli M P, Cheenkachorn K, Chuetor S, et al. Assessment of pure, mixed and diluted deep eutectic solvents on Napier grass (Cenchrus purpureus): compositional and characterization studies of cellulose, hemicellulose and lignin[J]. Carbohydrate Polymers, 2023, 306: 120599. |
| [56] | Baheg N M, Abdel-Hakim A, El-Wakil A E A, et al. Development of novel natural deep eutectic solvent for cellulose nanofibrillation of orange peel via new surface functionalization[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(40): 14793-14806. |
| [57] | Ma W, Yan S M, Meng M, et al. Preparation of betaine-modified cationic cellulose and its application in the treatment of reactive dye wastewater[J]. Journal of Applied Polymer Science, 2014, 131(15): 40522. |
| [58] | Li P P, Sirviö J A, Haapala A, et al. Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2846-2855. |
| [59] | Yang Z H, Asoh T A, Uyama H. Cationic functionalization of cellulose monoliths using a urea-choline based deep eutectic solvent and their applications[J]. Polymer Degradation and Stability, 2019, 160: 126-135. |
| [60] | Tang L, Wang B, Bai S R, et al. Preparation and characterization of cellulose nanocrystals with high stability from okara by green solvent pretreatment assisted TEMPO oxidation[J]. Carbohydrate Polymers, 2024, 324: 121485. |
| [61] | Ye J R, Gao Y B, Xu Q T, et al. P/N/S synergistic flame retardant holocellulose nanofibrils efficiently pretreated from ternary deep eutectic solvents[J]. Chemical Engineering Journal, 2023, 477: 147142. |
| [62] | Zhang Y T, Liu Y, Dong C H, et al. Transparent, thermal stable, water resistant and high gas barrier films from cellulose nanocrystals prepared by reactive deep eutectic solvents[J]. International Journal of Biological Macromolecules, 2024, 276: 134107. |
| [63] | Li P P, Sirviö J A, Asante B, et al. Recyclable deep eutectic solvent for the production of cationic nanocelluloses[J]. Carbohydrate Polymers, 2018, 199: 219-227. |
| [64] | Zhang X P, Huo D, Wei J X, et al. Synthesis of amino-functionalized nanocellulose by guanidine based deep eutectic solvent and its application in fine fibers retention[J]. International Journal of Biological Macromolecules, 2024, 260: 129473. |
| [65] | Sun S L, Cao X F, Li H L, et al. Simultaneous and efficient production of furfural and subsequent glucose in MTHF/H2O biphasic system via parameter regulation[J]. Polymers, 2020, 12(3): 557. |
| [66] | Xie J X, Xu J, Zhang Z H, et al. New ternary deep eutectic solvents with cycle performance for efficient pretreated radiata pine forming to lignin containing cellulose nanofibrils[J]. Chemical Engineering Journal, 2023, 451: 138591. |
| [67] | Feng X D, Jin D, Zhu Y C, et al. Insights into the role of deep eutectic solvents in sorbitol dehydration: a combined experimental and molecular dynamics study[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(46): 17035-17043. |
| [68] | 胡亚茹, 杨正棒, 王莹, 等. 基于三元低共熔溶剂体系制备阳离子化改性纤维素纳米纤丝及其性能研究[J]. 中国造纸, 2023, 42(10): 12-18. |
| Hu Y R, Yang Z B, Wang Y, et al. Preparation and performance of cationic modified cellulose nanofibril based on ternary deep eutectic solvent system[J]. China Pulp & Paper, 2023, 42(10): 12-18. | |
| [69] | Feng Y Y, Eberhardt T L, Meng F Y, et al. Efficient extraction of lignin from moso bamboo by microwave-assisted ternary deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis[J]. Bioresource Technology, 2024, 400: 130666. |
| [70] | Ma G R, Yin W Q, Shi Z J, et al. Direct carboxymethylation of cellulose fibers by ternary reactive deep eutectic solvents for the preparation of high-yield cellulose nanofibrils[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(15): 5871-5883. |
| [71] | Li B Y, Feng S Y, Huang J L, et al. Facile fractionation of poplar by a novel ternary deep eutectic solvent (DES) for cellulosic ethanol production under mild pretreatment conditions [J]. Industrial Crops & Products, 2025, 223: 120132. |
| [72] | Wang L Y, Yi J, Cheng F, et al. A novel efficient liquefaction process for corn starch through ternary deep eutectic solvent: products characterization and liquefaction mechanism[J]. International Journal of Biological Macromolecules, 2025, 289: 138929. |
| [73] | Pan J K, Carter-Fenk K A, Hung S T, et al. Dynamics of deep eutectic mixtures of tetraethylammonium halides/ethylene glycol investigated with ultrafast infrared spectroscopy[J]. The Journal of Physical Chemistry B, 2025, 129(10): 2718-2729. |
| [74] | Wang Z W, Liu Y Z, Barta K, et al. The effect of acidic ternary deep eutectic solvent treatment on native lignin[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(38): 12569-12579. |
| [75] | Liu Y Z, Deak N, Wang Z W, et al. Tunable and functional deep eutectic solvents for lignocellulose valorization[J]. Nature Communications, 2021, 12(1): 5424. |
| [76] | Wang Y X, Ryu J, Kim K H, et al. Investigation of the effects of ternary deep eutectic solvent composition on pretreatment of sorghum stover[J]. AIChE Journal, 2023, 69(12): e18227. |
| [77] | Ji Q H, Yu X J, Yagoub A E A, et al. Efficient cleavage of strong hydrogen bonds in sugarcane bagasse by ternary acidic deep eutectic solvent and ultrasonication to facile fabrication of cellulose nanofibers[J]. Cellulose, 2021, 28(10): 6159-6182. |
| [78] | Zhao X R, Lyu G J, Meng X, et al. Novel ternary deep eutectic solvent fractionation for effective utilization of willow[J]. Bioresource Technology, 2024, 407: 131148. |
| [79] | Pradhan D, Jaiswal S, Tiwari B K, et al. Choline chloride-oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers[J]. International Journal of Biological Macromolecules, 2024, 281: 136213. |
| [80] | Yan Z Y, Wang Z R, Chen Y H, et al. Preparation of lignin nanoparticles via ultra-fast microwave-assisted fractionation of lignocellulose using ternary deep eutectic solvents[J]. Biotechnology and Bioengineering, 2023, 120(6): 1557-1568. |
| [81] | Zhu J Y, Zhu P H, Zhu Y L, et al. Surface charge manipulation for improved humidity sensing of TEMPO-oxidized cellulose nanofibrils[J]. Carbohydrate Polymers, 2024, 335: 122059. |
| [82] | Putra S S S, Basirun W J, Hayyan A, et al. Ternary metal-organic framework composite with nanocellulose and deep eutectic solvent for the adsorptive removal of 3-MCPD esters[J]. Journal of Food Measurement and Characterization, 2025, 19(2): 1202-1219. |
| [83] | Gomez F J V, Espino M, Fernández M A, et al. A greener approach to prepare natural deep eutectic solvents[J]. ChemistrySelect, 2018, 3(22): 6122-6125. |
| [84] | Wu H H, Zhang K L, Jiang H Y, et al. Eutectic strategy for the solvent-free synthesis of hydrophobic cellulosic cross-linked networks with broad multifunctional applications[J]. ACS Macro Letters, 2024, 13(11): 1558-1564. |
| [85] | Kim Y, Bang J, Kim J, et al. Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(Ⅵ) remediation[J]. Carbohydrate Polymers, 2022, 278: 118930. |
| [86] | Aguado R J, Mazega A, Tarrés Q, et al. The role of electrostatic interactions of anionic and cationic cellulose derivatives for industrial applications: a critical review[J]. Industrial Crops and Products, 2023, 201: 116898. |
| [87] | Sanchez-Salvador J L, Xu H Y, Balea A, et al. Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading[J]. International Journal of Biological Macromolecules, 2024, 261: 129612. |
| [88] | Chen S H, Yue N, Cui M, et al. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils[J]. Carbohydrate Polymers, 2022, 294: 119803. |
| [89] | Guo X H, Yang R D, Wang Y, et al. Cationic cellulose nanofibers/chitosan auxiliary-dominated win-win strategy for paper yarn with superior color and physical performances[J]. Carbohydrate Polymers, 2024, 330: 121833. |
| [1] | 李泽权, 蔡天宇, 刘家骏, 陈奇志, 肖沛文, 徐小飞, 赵双良. 木质素基絮凝剂的合成与应用[J]. 化工学报, 2025, 76(9): 4709-4722. |
| [2] | 王钰, 冯英楠, 王涛, 赵之平. 原位生长构筑纳米复合纳滤膜:膜制备与应用[J]. 化工学报, 2025, 76(9): 4723-4736. |
| [3] | 戴元燊, 邵之江, 陈伟锋, 陈宁. 基于粒数衡算方程的三元前体结晶过程粒度分布动态预测方法[J]. 化工学报, 2025, 76(8): 4119-4128. |
| [4] | 吴阿强, 诸葛祥群, 刘通, 王明星, 罗鲲. 纳米普鲁士蓝悬浮电解液对锂氧电池性能的影响[J]. 化工学报, 2025, 76(8): 4310-4317. |
| [5] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [6] | 陆昕晟, 郭晓镭, 王世丞, 陆海峰, 刘海峰. 秸秆类生物质的粉碎特性研究[J]. 化工学报, 2025, 76(7): 3539-3551. |
| [7] | 吴天灏, 叶霆威, 林延, 黄振. 生物质化学链气化原位补氢制H2/CO可控合成气[J]. 化工学报, 2025, 76(7): 3498-3508. |
| [8] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| [9] | 张畅, 解强, 沙雨桐, 王炳杰, 梁鼎成, 刘金昌. 低灰低硅竹炭的制备及衍生硬炭的电化学性能[J]. 化工学报, 2025, 76(6): 3073-3083. |
| [10] | 姬海燕, 刘家印, 吴海军, 何璟琳, 靳紫恒, 魏钿航, 江霞. 低温等离子体在生物质气化制氢中的应用研究进展[J]. 化工学报, 2025, 76(6): 2419-2433. |
| [11] | 彭健, 沈鲁恺, 王立坤, 忻利宏, 刘涌, 赵高凌, 马赛男, 韩高荣. 钨酸盐纳米材料的制备及其在电致变色领域的研究进展[J]. 化工学报, 2025, 76(6): 2451-2468. |
| [12] | 王金月, 谢恩泽, 马翰泽, 袁晟, 何光伟, 姜忠义. 单原子层分离膜:进展与展望[J]. 化工学报, 2025, 76(5): 1943-1959. |
| [13] | 赵英东, 姬沛君, 丛日尧, 付海超, 张家龙, 陈鹏忠, 彭孝军. 丙烯酸配位有机锡光刻胶的制备及高分辨光刻研究[J]. 化工学报, 2025, 76(4): 1820-1830. |
| [14] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [15] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号